Тема 5: Элементы теории кодирования
Лекция 1. Теория кодирования. Общие положения
1) Общие положения теории кодирования [1,2,3]
Пусть — алфавит. Конечная последовательность символов из U называется словом в алфавите U. Через S(U) обозначим множество всех слов в алфавите U.
Пусть U и B — два алфавита. Однозначное отображение F произвольного подмножества на подмножества
называется кодированием. При этом слова из M называются сообщениями, а их образы — кодами сообщений. Множество С называется кодом множества сообщений М. Алфавит U называется алфавитом сообщений, а алфавит В — кодирующим алфавитом. Кодирование F называется взаимно однозначным, если каждый код сообщения является кодом ровно одного сообщения.
Пусть задано отображение букв алфавита U в множество S(B) вида
Кодирование , удовлетворяющее свойствам:
1)
2)
где под произведением слов АВ понимается приписывание слова В справа к слову А, называется алфавитным кодированием, задаваемым схемой .
2) Свойство префикса. Критерий однозначности декодирования [1,2,3]
Если то
называется префиксом, а
— суффиксом слова В. Префикс (суффикс) слова В называется собственным, если он отличен от пустого слова (обозначаемого через
) и от самого слова В. Длиной слова называется число букв в нем. Схема
обладает свойством префикса, если для любых слов
и
(
) из С(
) слово
не является префиксом слова
.
Теорема. Алфавитный код С() является однозначно декодируемым тогда и только тогда, когда в графе
отсутствуют контуры и петли, проходящие через вершину
.
Лекция 2. Коды, исправляющие ошиибки
1) Коды Хэмминга [1,2,3]
2) Метрические свойства кодов [1,2,3]