Смешанные стратегии

Платежная матрица игры

Стратегическое взаимодействие может включать много игроков и много стратегий, но мы ограничимся играми с участием двух лиц, имеющих конечное число стратегий. Это позволит нам без труда изобразить игру с помощью платежной матрицы.

Платежная матрица игры

 

  Игрок B
  Слева Справа
Верх 1, 2 0, 1
Низ 2, 1 1, 0

 

Если в какой-то игре у каждого игрока имеется доминирующая стратегия, можно предсказать, что данная игра будет иметь равновесный исход. Ведь доминирующая стратегия есть стратегия, которая является наилучшей вне зависимости от того, что делает другой игрок. В данном примере следовало бы ожидать равновесного исхода, при котором A следует стратегии "низ", получая равновесный выигрыш 2, а B следует стратегии "слева", получая равновесный выигрыш 1.

Однако, возможно, равновесие с доминирующими стратегиями связано с чересчур большими требованиями. Вместо требования, чтобы выбор, сделанный игроком A, был оптимальным для всех выборов игрока B, можно просто потребовать, чтобы он был оптимальным для всех оптимальных выборов, сделанных B. Ведь если B — хорошо информированный умный игрок, он захочет выбирать только оптимальные стратегии. (Хотя то, что оптимально для B, будет зависеть также от выбора, сделанного A!).

Мы будем говорить, что пара стратегий приводит к равновесию по Нэшу, если выбор, сделанный A, оптимален при данном выборе B, а выбор, сделанный B, оптимален при данном выборе A[2].

Помните, что ни один из игроков не знает, что будет делать другой, когда ему самому придется выбирать стратегию. Однако у каждого игрока могут иметься какие-то ожидания в отношении возможного выбора другого игрока. Равновесие по Нэшу можно истолковывать как пару таких ожиданий в отношении выбора каждого игрока, что когда выбор каждого становится известным, ни один из игроков не хочет изменить свое поведение.

Однако расширив наше определение стратегий, для этой игры можно найти новый род равновесия Нэша. До сих пор мы полагали, что каждый игрок выбирает стратегию раз и навсегда. Иными словами, каждый игрок делает выбор и придерживается его. Это называется чистой стратегией.

Можно представить себе дело и по-другому, допустив, что игроки выбирают стратегии случайно — приписывают каждому выбору определенную вероятность и разыгрывают выбранные стратегии в соответствии с этими вероятностями. Например, A мог бы предпочесть в течение 50% времени следовать стратегии "верх" и в течение 50% времени — стратегии "низ", в то время, как B мог бы предпочесть в течение 50% времени следовать стратегии "слева" и в течение 50% времени — стратегии "справа". Такого рода стратегия называется смешанной.

Если A и B будут придерживаться указанных выше смешанных стратегий, следуя каждой из выбранных ими стратегий в течение половины времени, то с вероятностью 1/4 они закончат игру в каждой из четырех ячеек платежной матрицы. Следовательно, средний выигрыш для A будет равен 0, а для B — 1/2. Равновесие по Нэшу при смешанных стратегиях — такое равновесие, в котором каждый игрок выбирает оптимальную частоту разыгрывания своих стратегий при заданной частоте разыгрывания выбранных стратегий другим игроком. Если на рынке имеются две фирмы, производящие однородный продукт, то существуют четыре переменные, представляющие интерес: цена, назначаемая каждой фирмой, и объемы выпуска, производимые каждой фирмой.Когда одна фирма принимает решение о цене и объеме выпуска, ей может уже быть известен выбор, сделанный другой фирмой. Если одна фирма начинает устанавливать цену раньше другой, первую фирму называют ценовым лидером, а вторую — ценовым ведомым. Аналогично одна фирма может первой выбирать объем выпуска, и в этом случае она является лидером по объему выпуска, а другая фирма — ведомым по объему выпуска. В указанных случаях стратегические взаимодействия образуют последовательную игру.

С другой стороны, когда одна фирма делает свой выбор, выбор, сделанный другой фирмой может быть ей неизвестен. В этом случае, чтобы самой принять разумное решение, она должна догадаться о том, каков выбор другой фирмы. Это одновременная игра. И снова существуют две возможности: фирмы могут одновременно выбирать цены или объемы выпуска.Данная классификационная схема дает четыре возможных варианта взаимодействия: лидерство по объему выпуска, лидерство в ценообразовании, одновременное установление объемов выпуска и одновременное установление цены. Каждый из этих типов взаимодействия порождает свой набор стратегических проблем.Существует еще одна возможная форма взаимодействия фирм, которую мы также рассмотрим. Вместо того чтобы конкурировать друг с другом в той или иной форме, фирмы могут войти в сговор. В этом случае две фирмы могут совместно, по соглашению друг с другом, устанавливать цены и объемы выпуска, максимизирующие сумму их прибылей. Этот род сговора называется кооперативной игрой.