Эквивалентные матрицы и системы

Понятие элементарного преобразования

Элементарное преобразование матриц

 

Определение 9.1: Элементарным преобразованием строк 1-го типа называется:

либо 1) замена строк местами;

либо 2) умножение строки на число ;

либо 3) сложение строк.

Определение 9.2: Элементарным преобразованием строк 2-го типа называется 1 из 2-х действий:

либо 1) замена строк местами;

либо 2) прибавление к одной строке другой, умноженной на некоторое число.

Аналогично определяются элементарные преобразования столбцов 1-го и 2-го типа.

 

Определение 9.3: Матрицы А и В называются эквивалентными, если одну из них можно получить из другой с помощью конечного числа элементарных преобразований строк.

 

Соответственно различают эквивалентности первого и второго типа.

Определение 9.4: Системы линейных уравнений называются эквивалентными, если эквивалентны их расширенные матрицы.

Читателю предлагается доказать самостоятельно, что эквивалентные системы линейных уравнений имеют одно и то же множество решений.

Свойства:

(предлагаем читателю вывести их самостоятельно)

1) А~А /рефлексивность/

2) А~ВВ~А /симметричность/

3) А~В, В~СА~С /транзитивность/