Органический мир делят на 5 царств
Система органического мира
Структура группы.
Факторы, влияющие на структуру группы:
1)степень чувства причастности членов группы к своей группе;
2)цели группы;
3)автономия группы (самостоятельность);
4)гомогенность группы (однородность по социально-демографическим характеристикам) приводит к более тесным неформальным связям;
5)характер руководства: если во главе группы руководитель автократического типа, то структура группы жесткая; если руководство осуществляется на демократической основе, структура группы является более гибкой; профессиональность и авторитетность руководителя тоже влияют;
6)размер группы (чем больше группа, тем более формальны отношения).
Возможные методы изучения структуры группы.
Работы Дж. Морено. Он предложил новый метод изучения структуры группы, введя термины макроструктура (пространственное расположение людей в группе) и микроструктура (психологические связи между членами группы). Социометрический тест состоит из ряда вопросов, побуждающих выбрать то или иное лицо (с кем бы вместе ты хотел...). При этом критерий должен быть значимым. На основе результатов теста можно нарисовать социометрическую матрицу.
Литература
1. Андреева Г.М. Социальная психология. – М., 1998 год.
2. Агеев В.С. Межгрупповое взаимодействие: Социально-психологические проблемы. – М., 1990 год.
3. Асмолов А.Г. Психология личности. – М., 1990 год.
4. Бэрон Р., Ричардсон Д. Агрессия . – С-Пб ., Изд. «Питер» , 1997 год.
5. Жуков Ю.М., Петровская Л.А., Соловьева О.В. Введение в практическую социальную психологию. - М., 1996 год.
6. Зиглер Д., Хьелл Л. Теория личности. – С-Пб ., Изд. «Питер» , 1997 год.
7. Кричевский Р.Л., Дубовская Е.М. Психология малой группы. – М., 1991 год
8. Крылов А.А. Психология. – М., Изд. «Проспект». 1998 год.
9. Майерс Д. Социальная психология. .- С-Пб ., Изд. «Питер» , 1997 год.
10. Реан А.А., Коломенский Я.Л. Социальная педагогическая психология. .- С-Пб ., Изд. «Питер» , 1999 год
11. Руденский Е.В. Социальная психология. – М., 1997 год.
12. Шихирев П.Н. Современная социальная психология. – М, 1999 год.
Империя (неклеточные и клеточные)
Надцарство (безъядерные и ядерные)
ВИРУСЫ БАКТЕРИИ ГРИБЫ РАСТЕНИЯ ЖИВОТНЫЕ
Элементарная единица в систематике - вид. Каждый вид называют двумя латинскими словами: первое обозначает принадлежность к роду, второе - видовой эпитет (Campanula latifolia - колокольчик широколистный).
Сходные виды объединяют в роды, роды - в семейства, семейства – в порядки (у животных - в отряды ), порядки – в классы, классы – в отделы (у животных – в типы ), отделы – в царства.
Основоположником систематики был К. Линней
Вирусы.
ВИРУСЫ— неклеточные формы жизни. Вирусы в 50 раз меньше бактерий, находятся на грани живого и неживого. Но если их считать живыми, то они окажутся самой многочисленной формой жизни на Земле.
Вирусы отличаются от всех других организмов.
1. Они могут существовать только как внутриклеточные паразиты и не могут размножаться вне клеток тех организмов, в которых паразитируют.
2. Содержат лишь один из типов нуклеиновых кислот — либо РНК, либо ДНК.
3. Имеют очень ограниченное число ферментов, используют обмен веществ хозяина, его ферменты, энергию, полученную при обмене веществ в клетках хозяина. Среди вирусных заболеваний — грипп, энцефалит,
корь, свинка, краснуха, гепатит, СПИД.
Общая характеристика бактерий.
Бактерии не имеют ядра, отделенного мембраной от цитоплазмы. Большинство бактерий не содержит хлорофилла и питается готовыми органическими веществами – гетеротрофно
Размножениепростым делением (возможен элеентарный половой процесс)
Питание гетеротрофное:
сапрофиты (используют органические вещества мертвых организмов); паразиты (используют органические вещества живых организмов); у некоторых - автотрофное:фотосинтезирующие (зеленые и пурпурные бактерии, цианобактерии); хемосинтезирующие (железобактерии, серобактерии, аммонифицирующие и нитрифицирующие бактерии)
Дыхание аэробное- у живущих в кислородной среде;
анаэробное- у живущих в бескислородной среде;
Факультативные анаэробыспособны жить и в кислородной и в бескислородной среде
Бактерии могут образовывать споры - приспособление к выживанию в неблагоприятных условиях.
Грибы
Размножение - Бесполое: спорами, почкованием (дрожжи); Вегетативное: Участками мицелия; возможен половой процесс.
Питание - гетеротрофное: сапрофиты и паразиты.
Запасные вещества - животный крахмал- гликоген.
Тело гриба называют грибницейили мицелием. Образовано переплетением нитей - гиф.
Грибы-1) Плесневые (мукор, пеницилл), 2)Дрожжи, 3) Шляпочные: а)Трубчатые (белый гриб, подберезовик) б) Пластинчатые (рыжики, сыроежки.)
Строение тела гриба: Шляпка, пенек, плодовое тело, грибница.
Общая характеристика растений.
НИЗШИЕ РАСТЕНИЯ — водоросли, одноклеточные и многоклеточные, живущие в водной среде и местах с высокой влажностью; у многоклеточных тело (слоевище) не разделено на органы, нет тканей; содержат хлорофилл и др.пигменты, обуславливающие их окраску. Известно приблизительно 55 000 видов.
ВЫСШИЕ РАСТЕНИЯ — наземные растения, большинство имеет ткани и тело, состоящее из органов (корень, стебель и его производные).
1. Споровые — размножаются спорами. 2. Семенные — размножаются семенами.
Общая характеристика животных.
Подцарство: Одноклеточные
Животные состоят из одной клетки, которой присущи все свойства и функции организма, выполняемые органоидами.
Приспособленность к среде обитания: цито-плазматическая мембрана может иметь дополнительные структуры (клеточная оболочка, раковина), увеличивающие ее прочность; при неблагоприятных условиях у большинства видов образуется плотная оболочка — циста (покоящееся состояние; способствует расселению). В настоящее время известно более 30 тысяч видов.
Значение одноклеточных: очищение водоемов (инфузория-туфелька поглощает бактерии); пища для более крупных животных (мальков рыб, рачков); образование отложений известняка (раковинные корненожки); паразитирование и болезни животных (дизентерийная амеба, малярийные паразиты и др.).
Подцарство: Многоклеточные
Животные состоят из большого количества клеток, разнообразных по структуре, формирующих ткани, органы, системы, выполняющие определенные функции и связанные в единый организм системами регуляции.
В настоящее время большинство зоологов считает, что первые многоклеточные животные произошли от колониальных жгутиконосцев. Первые многоклеточные животные имели тело, состоящее из двух типов клеток: двигательных со жгутиками и пищеварительных с псевдоподиями; позже клетки эктодермы со жгутиками начали выполнять функцию движения, а ушедшие внутрь — функции пищеварения и размножения.
Биосфера. Роль «живого вещества» на Земле.
Биосферой называется оболочка Земли, состав, структура и обмен энергии которой определяется деятельностью живых организмов.
Термин «биосфера» ввел в 1875 году Э. Зюсс, понимавший ее как тонкую пленку жизни на земной поверхности. Целостное учение о биосфере разработал Вернадский. Он показал, что биосфера отличается от других сфер Земли тем, что в ее пределах появляется геологическая деятельность всех живых организмов.
Живые организмы, преобразуя солнечную энергию, являются мощной силой, влияющей на геологические процессы. Специфическая черта биосферы как особой оболочки Земли – непрерывно происходящий в ней круговорот веществ, регулируемый деятельностью живых организмов. Т.к биосфера получает энергию извне – от Солнца, ее называют открытой системой. Живые организмы, регулируют круговорот веществ, служат мощным геологическим фактором, образующим поверхность Земли.
Живое вещество выполняет в биосфере следующие биологические функции:
Газовую – поглощает и выделяет газы; окислительно–восстановительную – окисляет, например, углеводы до углекислого газа и восстанавливает его до углеводов; концентрационную – организмы-концентраторы накапливают в своих телах и скелетах азот, фосфор, кремний, кальций, магний.
Газовая и окислительно-восстановительная функции живого вещества тесно связаны с процессами фотосинтеза и дыхания. В результате биосинтеза органических веществ автотрофными организмами было извлечено из древней атмосферы огромное количество углекислого газа. по мере увеличения биомассы зеленых растений изменялся газовый состав атмосферы – количество углекислого газа сокращалось, а кислорода – увеличивалось. Весь кислород атмосферы образован в результате процессов жизнедеятельности автотрофных организмов. Кислород используется живыми организмами для процесса дыхания, в результате чего в атмосферу поступает углекислый газ. Многие микроорганизмы непосредственно участвуют в окислении железа, что приводит к образованию осадочных железных руд, или восстанавливают сульфаты, образуя биогенные месторождения серы.
Роль живых организмов в формировании и поддержании состава атмосферы Земли.
Живые организмы, регулируют круговорот веществ, служат мощным геологическим фактором, образующим поверхность Земли.
Живое вещество выполняет в биосфере следующие биологические функции:
Газовую – поглощает и выделяет газы; окислительно–восстановительную – окисляет, например, углеводы до углекислого газа и восстанавливает его до углеводов; концентрационную – организмы-концентраторы накапливают в своих телах и скелетах азот, фосфор, кремний, кальций, магний.
Газовая и окислительно- восстановительная функции живого вещества тесно связаны с процессами фотосинтеза и дыхания. В результате биосинтеза органических веществ автотрофными организмами было извлечено из древней атмосферы огромное количество углекислого газа. по мере увеличения биомассы зеленых растений изменялся газовый состав атмосферы – количество углекислого газа сокращалось, а кислорода – увеличивалось. Весь кислород атмосферы образован в результате процессов жизнедеятельности автотрофных организмов. Кислород используется живыми организмами для процесса дыхания, в результате чего в атмосферу поступает углекислый газ.
Многие микроорганизмы непосредственно участвуют в окислении железа, что приводит к образованию осадочных железных руд, или восстанавливают сульфаты, образуя биогенные месторождения серы.
Теория эволюции Ламарка. Представления Ламарка о происхождении приспособлений и прогрессивном развитии жизни.
В противоречие с господствовавшими тогда взглядами Ламарк утверждал, что все виды, включая человека, произошли от других видов. Эволюция, по Ламарку, представлялась как непрерывное поступательное движение от низших форм жизни к высшим. Для объяснения разной степени сложности строения, наблюдаемой среди современных видов, он допускал постоянное самозарождение жизни: предки более организованных форм зарождались раньше и оттого их потомки ушли дальше по пути прогресса.
Механизмом эволюции Ламарк считал изначально заложенное в каждом живом организме стремление к совершенству, к прогрессивному развитию. Как и почему возникло это стремлении Ламарк. не объяснял. он полагал, что усиленное упражнение органов ведет к их увеличению, а неупражнение – к деградации. Ламарк был первым, кто предложил развернутую концепцию трансформизма – изменяемости видов.
Естественный отбор как фактор эволюции.
Естественный отбор по Дарвину - это совокупность природных процессов, обеспечивающих выживание наиболее приспособленных особей и их потомства, а с другой стороны — прекращение размножения и гибель наименее приспособленных особей.
В основе естественного отбора лежит борьба за существование. Дарвин выделял три формы этой борьбы.
а) Внутривидовая — это конкуренция растений одного вида за свет и воду, животных одного вида — за пищу и участки для поселения и т.д.
б) Межвидовая— это взаимоотношения между особями различных видов, которые могут развиваться, в частности, в виде паразитизма, хищничества, конкуренции и т.п. Примером межвидовой борьбы могут служить взаимоотношения между популяцией хищников (куницы, горностаи и т.п.) и мелких грызунов или вытеснение светолюбивыми растениями других светолюбивых видов, которых они лишают необходимого освещения.
в) Борьба с неблагоприятными условиями среды происходит при взаимодействии живых организмов с абиотическими факторами природы. То есть это борьба с недостатком или избытком влаги, освещенности, с перепадом температур и т.п.
Таким образом, все новые признаки, возникающие в результате наследственной изменчивости, проходят проверку естественным отбором.
Главное направление эволюционного процесса.
Основными направлениями эволюционного процесса являются биологический прогресс и регресс.
Биологический прогресс означает успех данной группы живых организмов в борьбе за существование, что сопровождается повышением численности особей этой группы, расширением ее ареала и распадением на более мелкие систематические единицы (отряды на семейства, семейства на роды и т.д.). Все эти признаки взаимосвязаны, т.к. увеличение численности с необходимостью требует расширения ареала, а в результате заселения новых мест обитания возникает идиоадаптация, что приводит к образованию .новых подвидов, видов, родов и т.д.
Биологическим регрессом, наоборот, называют упадок данной группы живых организмов из-за того, что она не смогла приспособиться к изменениям условий среды или была вытеснена более удачливыми конкурентами. Для регресса характерно уменьшение числа особей в данной группе, сужением ее ареала и уменьшением входящих в нее более мелких систематических единиц. Регресс, в конце концов, может привести к полному вымиранию данной группы.
Прогресс достигается с помощью ароморфозов, идиоадаптаций или общей дегенерации, которые в свою очередь также можно рассматривать как главные направления эволюции.
Ароморфозом (морфофизиологическим прогрессом) называется эволюционное преобразование строения и функций организма, повышающее общий уровень его организации, но не имеющее узкоприспособительного значения к условиям окружающей среды. Наиболее крупными ароморфозами, возникшими еще в докембрии, были возникновение фотосинтеза, появление многоклеточных организмов и полового размножения.
Идиоадаптацией называется частное приспособление организмов к определенному образу жизни в конкретных условиях внешней среды. В отличие от ароморфоза идиоадаптация существенно не сказывается на общем уровне организации данной биологической группы. Благодаря формированию различных идиоадаптаций животные близких видов могут жить в самых различных географических зонах.
В некоторых случаях переход организмов в новые, обычно более простые, условия существования сопровождается упрощением их строения, т.е. общей дегенерацией.
Движущая форма естественного отбора.
Движущая форма отбора.Организмы, составляющие любую популяцию или вид, как вы знаете, очень разнообразны. Несмотря на это, каждая популяция характеризуется некоторым средним значением любого признака. Для количественных признаков средняя величина определяется как среднее арифметическое значение, например средним числом рождаемых потомков, средней длиной крыла, средней массой тела. Для характеристики популяции по качественным признакам определяется частота (процент или доля) особей с тем или иным признаком: например, частота черных и белых бабочек или частота комолых и рогатых животных.
Изменение условий существования часто приводит к отбору особей с отклонениями от средней величины отбираемого признака. Например, было обнаружено, что ширина головогруди у крабов, обитающих в бухте г. Плимута (Англия), уменьшилась. Причина такого явления связана с лучшим выживанием в мутной воде мелких крабов с небольшой шириной головогруди. Это объясняется тем, что меловая взвесь забивала широкие дыхательные щели у крупных крабов, вызывая тем самым их гибель.
Яркий пример, доказывающий существование движущей формы естественного отбора в природе,— так называемый индустриальный меланизм. Многие виды бабочек в районах, не подвергнутых индустриализации, имеют светлую окраску тела и крыльев. Развитие промышленности, связанное с этим загрязнение стволов деревьев и гибель лишайников, живущих на их коре, привели к резкому возрастанию частоты встречаемости черных (меланистических) бабочек. В окрестностях некоторых городов черные бабочки за короткое время стали преобладающими, тогда как сравнительно недавно они там полностью отсутствовали.
Причина возрастания частоты встречаемости черных бабочек в промышленных районах состоит в том, что на потемневших стволах деревьев белые бабочки стали легкой добычей птиц, а черные бабочки, наоборот, стали менее заметными.
Примеров, доказывающих существование движущей формы отбора, множество, но суть их одна: естественный отбор до тех пор смещает среднее значение признака или меняет частоту встречаемости особей с измененным признаком, пока популяция приспосабливается к новым условиям. Движущая форма естественного отбора приводит к закреплению новой нормы реакции организма, которая соответствует изменившимся условиям окружающей среды. Отбор всегда идет по фенотипам, но вместе с фенотипом отбираются и генотипы, их обусловливающие. Необходимо подчеркнуть, что любая адаптация (приспособление) никогда не бывает абсолютной. Приспособление всегда относительно в связи с постоянной изменчивостью организмов и условий среды. Отбор особей с уклоняющимся от ранее установившегося в популяции значением признака называют движущей формой отбора.
Стабилизирующая форма естественного отбора.
Стабилизирующая форма отбора.Приспособленность к определенным условиям среды не означает прекращения действия отбора в популяции. Поскольку в любой популяции всегда осуществляется мутационная и комбинативная изменчивость, то постоянно возникают особи с существенно отклоняющимися от среднего значения признаками. При стабилизирующем отборе устраняются особи с существенными отклонениями от средних значений признаков, типичных для популяции или вида.
Наблюдаемое в любой популяции животных или растений большое сходство всех особей — результат действия стабилизирующей формы естественного отбора.
Известно много примеров стабилизирующего отбора. Во время бури преимущественно гибнут птицы с длинными и короткими крыльями, тогда как птицы со средним размером крыльев чаще выживают; наибольшая гибель детенышей млекопитающих наблюдается в семьях, размер которых больше и меньше среднего значения, поскольку это отражается на условиях кормления и на способности защищаться от врагов. Стабилизирующая форма естественного отбора была открыта выдающимся отечественным биологам-эволюционистам академиком И.И. Шмальгаузеном.
Говоря о естественном отборе в целом, нельзя упускать из вида его творческую роль. Накапливая полезные для популяции и вида наследственные изменения и отбрасывая вредные, естественный отбор постепенно создает новые, более совершенные и прекрасно приспособленные к среде обитания виды.
Конкуренция и ее роль в эволюции.
Многие животные, населяющие одно и то же пространство, питаются сходной пищей, занимают одинаковые участки при устройстве гнезд и нор.
Внутривидовая конкуренция проявляется в борьбе за существование и приходит очень остро, так как одинаковы цепи питания и экологическая ниша. Результат конкуренции проявляется в выделении каких-то особых признаков, позволяющих животному выделиться в среде. Межвидовая конкуренция проявляется между особями экологически близких видов. Возникают антагонистические отношения между родственными видами, когда один вид вытесняет другой. Это приводит к увеличению экологических различий между видами. Примером последствий борьбы близких видов могут служить два вида скальных поползней. В тех местах, где ареалы этих видов перекрываются, т.е. на одной территории живут птицы обоих видов, длина клюва и способ добывания пищи у них существенно отличается. В неперекрывающихся областях обитания поползней отличия в длине клюва си способе добывания пищи не обнаруживаются. Что ведет к экологическому и географическому разнообразию видов.
Вид и видообразие.
Видом называют совокупность особей, сходных по строению, имеющих общее происхождение, свободно скрещивающихся между собой и дающих плодовитое потомство. Все особи одного вида имеют одинаковый кариотип, сходное поведение и занимают определенный ареал (область распространения).
Одна из важных характеристик вида — его репродуктивная изоляция, т. е. существование механизмов, препятствующих притоку генов извне. Защищенность генофонда данного вида от притока генов других, в том числе близкородственных, видов достигается разными путями.
Сроки размножения у близких видов могут не совпадать. Если сроки одни и те же, то не совпадают места размножения. Например, самки одного вида лягушек мечут икру по берегам рек, другого вида — в лужах. При этом случайное осеменение икры самцами другого вида исключается. У многих видов животных наблюдается строгий ритуал поведения при спаривании. Если у одного из потенциальных партнеров для скрещивания ритуал поведения отклоняется от видового, спаривания не происходит. Если все же спаривание произойдет, сперматозоиды самца другого вида не смогут проникнуть в яйцеклетку, и яйца не оплодотворятся. Фактором изоляции также служат предпочитаемые источники пищи: особи кормятся в разных биотопах и вероятность скрещивания между ними уменьшается. Но иногда (при межвидовом скрещивании) оплодотворение, все же, происходит. В этом случае образовавшиеся гибриды либо отличаются пониженной жизнеспособностью, либо оказываются бесплодными и не дают потомства. Известный пример — мул — гибрид лошади и осла. Будучи вполне жизнеспособным, мул бесплоден из-за нарушения мейоза: негомологичные хромосомы не конъюгируют. Перечисленные механизмы, предотвращающие обмен генами между видами, имеют неодинаковую эффективность, но в комплексе в природных условиях они создают непроницаемую генетическую изоляцию между видами. Следовательно, вид — реально существующая, генетически неделимая единица органического мира.
Каждый вид занимает более или менее обширный ареал (от лат. area — область, пространство). Иногда он сравнительно невелик: для видов, обитающих в Байкале, он ограничивается этим озером. В других случаях ареал вида охватывает огромные территории. Так, черная ворона почти повсеместно распространена в Западной Европе. Восточная Европа и Западная Сибирь населены другим видом — серой вороной. Существование определенных границ распространения вида не означает, что все особи свободно перемещаются внутри ареала. Степень подвижности особей выражается расстоянием, на которое может перемещаться животное, т. е.радиусом индивидуальной активности. У растений этот радиус определяется расстоянием, на которое распространяется пыльца, семена или вегетативные части, способные. Дать начало новому растению.
Для виноградной улитки радиус активности составляет несколько десятков метров, для северного оленя — более ста километров, для ондатры — несколько сот метров. Вследствие ограниченности радиусов активности лесные полевки, обитающие в одном лесу, имеют немного шансов встретиться в период размножения с лесными полевками, населяющими соседний лес. Травяные лягушки, мечущие икру в одном озере, изолированы от лягушек другого озера, расположенного в нескольких километрах от первого. В обоих случаях изоляция неполная, поскольку отдельные полевки и лягушки могут мигрировать из одного местообитания в другое.
Особи любого вида распределены внутри видового ареала неравномерно. Участки территории с относительно высокой плотностью населения чередуются с участками, где численность вида низкая или особи данного вида совсем отсутствуют. Поэтому вид рассматривается как совокупность отдельных групп организмов — популяций.
Популяция — это совокупность особей данного вида, занимающих определенный участок территории внутри ареала вида, свободно скрещивающихся между собой и частично или полностью изолированных от других популяций. Реально вид существует в виде популяций. Генофонд вида представлен генофондами популяций. Популяция — это элементарная единица эволюции.
Популяция и ее характеристики.
Популяция – совокупность особей одного вида, обладающих общим генофондом и занимающих определенную территорию. Контакты между особями внутри одной популяции происходят чаще, чем между особями разных популяций. Внутри популяции можно выделить более мелкие подразделения (семьи). Популяции разных видов, сосуществующих в одном месте, образуют в своей совокупности сообщество (биоценоз). Популяции характеризуются общей численностью особей, плотностью, характером пространственного распределения особей, а также упорядоченностью структуры. Различают возрастную, половую, размерную, генетическую и другие структуры. Динамика численности популяции во времени определяется соотношением показателей рождаемости и смертности особей, а также их иммиграции и эмиграции. Способность к росту свойственна любой популяции, но из-за нехватки природных ресурсов или неблагоприятных природных условий, рост прекращается и сменяется падением.
В современной биологии популяция рассматривается как элементарная единица процесса микроэволюции, способная реагировать на изменение среды перестройкой своего генофонда. Изменения, происходящие в популяции, видны на примерах видообразования.
Одни популяции очень многочисленны, характеризуются высокой плотностью и окружены подобными популяциями, другие малочисленны и находятся на краю ареала. Все это приводит к различной интенсивности миграции, изменению частоты близкородственных скрещиваний, неодинаковому воздействию различных форм естественного отбора. Хотя виды состоят из организмов, сами организмы не способны претерпевать эволюционные преобразования. Отдельная особь от появления до исчезновения испытывает лишь онтогенетические изменения, а изменения генотипов, без которых эволюционный процесс немыслим, возможны лишь во времени в группах особей, то есть в популяции.
Биогеоценоз. Виды взаимодействия живых организмов в биогеоценозах.
БИОГЕОЦЕНОЗ— совокупность организмов разных видов и различной сложности организации с факторами среды их обитания. В процессе совместного исторического развития организмов разных систематических групп образуются динамичные, устойчивые сообщества.
Совокупность всех живых организмов биогеоценоза — биоценоз — включает продуцентов (земные растения), образующих органическое вещество, а также консументов (животные) и редуцентов (микроорганизмы), живущих за счет готовых органических веществ и осуществляющих их разложение до простых веществ, которые снова используются, усваиваются растениями.
В биогеоценоз входят также: приземный слой атмосферы с ее газовыми и тепловыми ресурсами, почва, вода и др. химические компоненты, участвующие в биотическом круговороте. Постоянный приток солнечной энергии — необходимое условие существования биогеоценоза. Каждый биоценоз характеризуется определенной однородностью абиотической среды и составом почвы.
В биогеоценозе осуществляется биогенный круговорот веществ. Он является незамкнутой и динамичной экосистемой (то есть постепенным накоплением массы живого вещества и усложнением структуры). Рациональное использование и охрана природных биогеоценозов невозможны без знания их структуры и функционирования.
Симбиотические отношения.
Лишайник всеми воспринимается как единый организм. На самом же деле он состоит из гриба и водоросли. Основу его составляют переплетающиеся гифы (нити) гриба. В рыхлом слое под поверхностью среди гиф гнездятся водоросли. Чаще всего это одноклеточные зеленые водоросли. Совместное существование выгодно и грибу, и водорослям. Гриб дает водорослям воду с растворенными минеральными солями, а получает от водоросли органические соединения, вырабатываемые ею в процессе фотосинтеза, главным образом углеводы. Симбиоз так хорошо помогает лишайникам в борьбе за существование, что они способны поселятся на песочных почвах, на бесплодных скалах, там, где другие растения существовать не могут.
Межвидовая конкуренция и ее роль в изменении биоценозов.
Под межвидовой борьбой следует понимать взаимоотношения особей разных видов. Они могут быть как конкурентными, так и основанными на взаимной выгоде. Особой остроты межвидовая конкуренция достигает в тех случаях, когда противоборствуют виды, которые живут в сходных экологических условиях и используют одинаковые источники питания. В результате межвидовой борьбы происходит либо вытеснение одного из противоборствующих видов, либо приспособление видов к разным условиям в пределах единого ареала или, наконец, их территориальное разобщение.
Иллюстрацией последствий борьбы близких видов могут служить два вида скальных поползней. В тех местах, где ареалы этих видов перекрываются, т. е. на одной территории живут птицы обоих видов, длина клюва и способ добывания пищи у них существенно отличаются. В неперекрывающихся областях обитания поползней отличий в длине клюва и способе добывания пищи не обнаруживается. Межвидовая борьба, таким образом, ведет к экологическому и географическому разобщению видов.
В качестве примеров межвидовой борьбы можно назвать взаимоотношения хищника и жертвы, хозяина и паразита, а также взаимовыгодное сожительство особей разных видов.
Экологический фактор и экологический оптимум.
Экологические факторы.Природа, в которой обитает живой организм, является средой его обитания. Окружающие условия многообразны и изменчивы. Не все факторы среды с одинаковой силой воздействуют на живые организмы. Одни могут быть необходимы для организмов, другие, наоборот, вредны; есть такие, которые вообще безразличны для них. Факторы, среды, которые воздействуют на организм, называют экологическими факторами.
По происхождению и характеру действия все экологические факторы разделяют на абиотические, т. е. факторы неорганической (неживой) среды, и биотические, связанные с влиянием живых существ. Эти факторы подразделяют на ряд частных факторов.
Абиотические факторы: свет, температура, влага, ветер, воздух, давление, течения, долгота дня и т. д.; механический состав почвы, ее водопроницаемость и влагоемкость; содержание в почве или воде элементов питания, газовый состав, соленость воды, естественный фон радиоактивности.
Биотические Факторы: влияние растений на других членов биоценоза;
влияние животных на других членов биоценоза.
Антропогенные факторы, возникающие в результате деятельности человека, например выбросы тяжелых металлов, радионуклидов.
Биологический оптимум.Часто в природе бывает так, что одни экологические факторы находятся в изобилии (например, вода и свет), а другие (например, азот) — в недостаточных количествах. Факторы, снижающие жизнеспособность организма, называют ограничивающими. Например, ручьевая форель живет в воде с содержанием кислорода не менее 2 мг/л. При содержании в воде кислорода менее 1,6 мг/л форель гибнет. Кислород — ограничивающий фактор для форели.
Ограничивающим фактором может быть не только его недостаток, но и избыток. Тепло, например, необходимо всем растениям. Однако если продолжительное время летом стоит высокая температура, то растения даже при увлажненной почве могут пострадать из-за ожогов листьев.
Следовательно, для каждого организма существует наиболее подходящее сочетание абиотических и биотических факторов, оптимальное для его роста, развития и размножения. Наилучшее сочетание условий называют биологическим оптимумом.
Выявление биологического оптимума, знание закономерностей взаимодействия экологических факторов имеют большое практическое значение. Умело поддерживая оптимальные условия жизнедеятельности сельскохозяйственных растений и животных, можно повышать их продуктивность.
Основные положения клеточной теории, ее значение
Все живые организмы состоят из клеток — из одной клетки (одноклеточные организмы) или многих (многоклеточные).
Клетка — это один из основных структурных, функциональных и воспроизводящих элементов живой материи; это элементарная живая система. Существуют неклеточные организмы (вирусы), но они могут размножаться только в клетках. Существуют организмы, вторично потерявшие клеточное строение (некоторые водоросли).
История изучения клетки связана с именами ряда ученых. Р. Гук впервые применил микроскоп для исследования тканей и на срезе пробки и сердцевины бузины увидел ячейки, которые и назвал клетками. Антони ван Левенгук впервые увидел клетки под увеличением в 270 раз. М. Шлейден и Т. Шванн явились создателями клеточной теории.
Они ошибочно считали, что клетки в организме возникают из первичного неклеточного вещества. Позднее Р. Вирхов сформулировал одно из важнейших положений клеточной теории: «Всякая клетка происходит из другой клетки...»
Современная клеточная теория включает следующие положения:
клетка — основная единица строения и развития всех живых организмов, наименьшая единица живого;
клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ;
каждая новая клетка образуется в результате деления исходной (материнской) клетки;
в сложных многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани; из тканей состоят органы, которые тесно взаимосвязаны и подчинены нервным и гуморальным системам регуляции.
Значение клеточной теории в развитии науки велико. Стало очевидно, что клетка — это важнейшая составляющая часть всех живых организмов. Она их главный компонент в морфологическом отношении; клетка является эмбриональной основой многоклеточного организма, т.к. развитие организма начинается с одной клетки — зиготы; клетка — основа физиологических и биохимических процессов в организме. Клеточная теория позволила прийти к выводу о сходстве химического состава всех клеток и еще раз подтвердила единство всего органического мира.
Различия клеток про- и эукариот
По наличию или отсутствию ядра клеточные организмы делят на два надцарства: безъядерные (прокариоты) и ядерные (эукариоты). К первой группе относят синезеленых и бактерии, ко второй – всех животных, зеленые растения и грибы.
В клетках синезеленых нет ядра, вакуолей, отсутствует половое размножение. Синезеленые замечательны тем, что способны усваивать азот воздуха и превращать его в органические формы азота. При фотосинтезе они используют угл.газ, выделяя молекулярный кислород. Они могут использовать как солнечную энергию (автотрофность), так и энергию, выделяющуюся при расщеплении готовых органических веществ (гетеротрофность).
Бактерии. Большинство бактерий получаю энергию, используя органические вещества, незначительная часть способна утилизировать солнечную энергию. Основная особенность строения бактерий – отсутствие ядра, ограниченного оболочкой. Наследственная информация заключена в одной хромосоме. Она состоит из одной молекулы ДНК, имеет форму кольца и погружена в цитоплазму. ДНК не образует комплексов с белками. Бактериальная клетка окружена мембраной, отделяющей цитоплазму от клеточной стенки, в цитоплазме мембран мало. В ней находятся рибосомы, осуществляющие синтез белков. Все ферменты, обеспечивающие процессы жизнедеятельности бактерий, диффузно рассеяны по цитоплазме или прикреплены к внутренней поверхности мембраны. Бактерии размножаются делением надвое. Многим бактериям свойственно спорообразование. Споры бактерий очень устойчивы.
Эукариотические клетки имеют более сложное строение, хотя и состоят из тех же основных структурных компонентов (клеточная стенка, плазмалемма, цитоплазма), и клетки прокариот. Прежде всего, эукариотическая клетка разделена многочисленными внутренними мембранами на реакционные пространства — компартменты, или отсеки. В этих отсеках одновременно и независимо друг от друга протекают различные химические реакции. Функции в клетке распределены между ядром и разными органеллами, такими как митохондрии, рибосомы, комплекс Гольджи и др. Клеточное ядро, митохондрии и пластиды четко отграничены от остальной цитоплазмы оболочкой из двух мембран. В ядре находится генетический материал клетки (ДНК и связанные с ней вещества). Хлоропласты у растений служат главным образом для улавливания энергии солнечного света и превращения ее в процессе фотосинтеза в химическую энергию органических веществ, митохондрии — для выработки энергии путем расщепления углеводов, жиров, белков и других органических соединений. Мембранные системы цитоплазмы клеток эукариот — эндодоплазматическая сеть и комплекс Гольджи — участвуют в синтезе и упаковке макромолекул, необходимых для осуществления жизнедеятельности клетки. Вакуоли, лизосомы и пероксисомы выполняют специфические для каждой из тих органелл функции. Только рибосомы, хромосомы, микротрубочки и микрофибриллы имеют немембранное происхождение. Деление эукариотической клетки происходит путем митоза.
Углеводы, жиры, и белки как топливо для организма: достоинства и недостатки.
В составе клеток всех живых организмов широкое распространение имеют углеводы. Углеводами называются органические соединения, состоящие из углерода, водорода и кислорода. Общая формула таких углеводов Сn(H2O)m ,например, один из самых распространенных углеводов – глюкоза – C6H12O6. Глюкоза является простым сахаром. В составе молока находится молочный сахар, который состоит из остатков молекул двух простых сахаров (дисахарид). Молочный сахар – основной источник энергии для детенышей всех млекопитающих.
В составе живых организмов имеется много разнообразных полисахаридов: у растений это крахмал, у животных – гликоген. Крахмал и гликоген играют роль как бы аккумуляторов энергии, необходимой для жизнедеятельности клеток организма.
Важнейшая функция углеводов – энергетическая. В пищеварительном тракте человека и животных полисахарид крахмал расщепляется особыми белками (ферментами) до мономерных звеньев - глюкозы. Глюкоза всасывается из кишечника в кровь, окисляется в клетках до углекислого газа и воды с освобождением энергии химических связей, а избыток ее запасается в клетках печени и мышц в виде гликогена. Однако, избыток углеводов приводит к увеличению веса.
Жиры (липиды) представляют собой соединения высокомолекулярных жирных кислот и трехатомного спирта глицерина. Накапливаясь в клетках жировой ткани животных, в плодах растений, жир служит запасным источником энергии. У некоторых животных, например, у китов и ластоногих под кожей накапливается толстый слой подкожного жира, который благодаря низкой теплопроводности защищает их от переохлаждения. Одна из основных функций жиров – энергетическая, в ходе расщепления жиров освобождается большое количество энергии.
Белки – обязательная составная часть всех клеток. Белки также могут быть источником энергии. При недостатке углеводов или жиров окисляются молекулы аминокислот. Освобождающаяся при этом энергия используется на поддержание процессов жизнедеятельности организма.
Белки: строение и роль в клетке.
Белки— нерегулярные биополимеры, состоящие из 20 различных мономеров — природных альфа-аминокислот.
Аминокислоты — азотсодержащие органические соединения, в молекулах которых с одним из атомов углерода связаны аминогруппа, карбоксильная группа и остальная часть молекулы, называемая радикалом. В белке аминогруппа одной аминокислоты соединяется с карбоксильной группой другой аминокислоты, такая связь называется пептидной.
Аминокислоты:
1) заменимые — синтезируются в организме человека и животных;
2) незаменимые — не синтезируются или синтезируются в недостаточном количестве и должны поступать с пищей (для человека: валин, изолейцин, лейцин, лизин, метионин, треонин, тирозин, триптофан, аргинин, фенилаланин).
В состав белков может входить различное количество аминокислот: в инсулин — 18, в большинство белков — 300—500, в некоторые — более 1500. Молекулярная масса белков различна: инсулина — 5700, гемоглобина — 152 000, миозина (белок мышц) — 500 000.
В строении молекул белков различают четыре уровня организации.
Первичная структура — последовательность аминокислотных остатков в молекуле белка.
Вторичная структура — регулярная укладка звеньев цепи в результате образования водородных связей (спираль или параллельная укладка полипептидных цепей).
Третичная структура — пространственная конфигурация (клубок или фибрилла), образованная дисульфидными связями или гидрофобными взаимодействиями.
Четвертичная структура — результат взаимодействия нескольких белковых молекул.
ДНК и ее роль в клетке и организме.
Дезоксирибонуклеиновая кислота – ДНК – биологический полимер, состоящий из двух полинуклеотидных цепей, соединенных друг с другом. ДНК- полимер с очень большой полимерной массой. Нуклеотиды, входящие в состав ДНК, содержат пятиуглеродный сахар – дезоксирибозу, одно из четырех азотистых оснований: аденин, гуанин, цитозин, тимин (А, Г, Ц, У); остаток фосфорной кислоты.
В составе нуклеотидов к молекуле рибозы с одной стороны присоединено азотистое соединение, а с другой - остаток фосфорной кислоты. Нуклеотиды соединяются между собой в длинные цепи. Остов такой цепи образуют регулярно чередующиеся остатки сахара и фосфорной кислоты, а боковые группы этой цепи – четыре типа нерегулярно чередующихся азотистых оснований.
Молекула ДНК представляет собой структуру, состоящую из двух нитей, которые по всей длине соединены друг с другом водородными связями. Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью. Против азотистого соединения А в одной цепи лежит азотистое основание Т в другой цепи, а против азотистого соединения Г всегда расположено азотистое основание Ц.
Схематично: А – Т
Т – А
Г – Ц
Ц – Г
Эти пары оснований называются комплементарными основаниями (дополняющими друг друга).
Порядок расположения нуклеотидов в молекулах ДНК определяет порядок расположения аминокислот в линейных молекулах белков, т.е. их первичную структуру. Набор белков определяет свойства клетки и организма. Молекулы ДНК хранят сведения об этих свойствах и передают их поколениям потомков, т.е. являются носителями наследственной информации. Молекулы ДНК в основном находятся в ядрах клеток и в небольшом количестве в митохондриях и хлоропластах.
РНК, ее виды и роль в клетке.
РНК – рибонуклеиновая кислота. Наследственная информация, хранящаяся в молекулах ДНК, реализуется через молекулы белков. Информация о строении белка передается в цитоплазму особыми молекулами РНК, которые называются информационными (и-РНК). Информационная РНК переносится в цитоплазму, где с помощью специальных органоидов – рибосом идет синтез белка. Именно информационная РНК, которая строится комплементарно одной из нитей ДНК, определяет порядок расположения аминокислот в белковых молекулах.
В синтезе белка принимает участие и другой вид РНК – транспортная (т-РНК), которая подносит аминокислоты к месту образования белковых молекул – рибосомам, своеобразным фабрикам по производству белков.
В состав рибосом входит третий вид РНК, так называемая, рибосомная РНК (р-РНК), которая определяет структуру и функционирование рибосом. Каждая молекула РНК в отличии от молекул ДНК представлена одной нитью; вместо дезоксирибозы содержит рибозу и вместо тимина – урацил. Различные виды РНК принимают участие в реализации наследственной информации через синтез белка.
Генетический код и его свойства.
Генетическая информация, содержащаяся в ДНК и в и-РНК, заключена в последовательности расположения нуклеотидов в молекулах. Каким же образом и-РНК кодирует (шифрует) первичную структуру белков, т. е. порядок расположения аминокислот в них?
Суть кода заключается в том, что последовательность расположения нуклеотидов в и-РНК определяет последовательность расположения аминокислот в белках. Этот код называют генетическим, его расшифровка — одно из великих достижений науки.
Носителем генетической информации является ДНК, но так как непосредственное участие в синтезе белка принимает и-РНК — копия одной из нитей ДНК, то генетический код записан на «языке» РНК.
Код триплетен. В состав РНК входят 4 нуклеотида: А, Г, Ц, У. Если бы мы попытались обозначить одну аминокислоту одним нуклеотидом, то можно было бы зашифровать лишь 4 аминокислоты, тогда как их 20 и все они используются в синтезе белков. Двухбуквенный код позволил бы зашифровать 16 аминокислот (из 4 нуклеотидов можно составить 16 различных комбинаций, в каждой из которых имеется 2 нуклеотида).
В природе же существует трехбуквенный, или триплетный, код. Это означает, что каждая из 20 аминокислот зашифрована последовательностью 3 нуклеотидов, т.е. триплетом, который получил название кодон. Из 4 нуклеотидов можно создать 64 различные комбинации, по 3 нуклеотида в каждой (43=64). Этого с избытком хватает для кодирования 20 аминокислот и, казалось бы, 44 триплета являются лишними. Однако это не так. Почти каждая аминокислота шифруется более чем одним кодоном (от 2 до 6). Это видно из таблицы генетического кода.
Код однозначен. Каждый триплет шифрует только одну аминокислоту. У всех здоровых людей в гене, несущем информацию об одной из цепей гемоглобина, триплет ГАА или ГАГ, стоящий на шестом месте, кодирует глутаминовую кислоту. У больных серповидноклеточной анемией второй нуклеотид в этом триплете заменен на У. Триплеты ГУА или ГУГ, которые в этом случае образуются, кодируют аминокислоту валин.
Код универсален. Код един для всех живущих на Земле существ. У бактерий и грибов, злаков и мхов, муравья и лягушки, окуня и пеликана, черепахи, лошади и человека одни и те же триплеты кодируют одни и те же аминокислоты.
Биосинтез белка.
Белки синтезируют все клетки, кроме безъядерных (например, взрослых эритроцитов млекопитающих).
Структура белка определяется ядерной ДНК. Информация о последовательности аминокислот в одной полипептидной цепи находится в участке ДНК, который называется ген. Таким образом, в ДНК заложена информация о первичной структуре белка.
Код ДНК един для всех организмов. Каждой аминокислоте соответствует три нуклеотида, образующих триплет, или кодон. В ДНК имеется избыточность кода: имеется 64 комбинации триплетов, тогда как аминокислот только 20. Существуют также триплеты, которые обозначают начало и конец гена.
Синтез белка начинается с транскрипции, то есть синтеза и-РНК по матрице одной из цепей ДНК. Процесс идет по принципу комплементарности с помощью фермента ДНК-полимеразы и начинается с определенного участка ДНК. Синтезированная и-РНК поступает в цитоплазму на рибосомы, где и идет синтез белка.
К рибосомам подходят аминокислоты в соединении с т-РНК; аминокислота прикрепляется к акцепторному участку т-РНК. Противоположный конец т-РНК называется антикодон, который несет информацию о соответствующем триплете; т-РНК имеет структуру, похожую на лист клевера. Существует более 20 видов т-РНК.
Перенос информации с и-РНК на белок во время его синтеза называется трансляцией. Собранные в полисомы рибосомы двигаются по и-РНК; движение происходит последовательно, по триплетам. В месте контакта рибосомы с и-РНК работает фермент, собирающий белок из аминокислот, доставляемых к рибосомам т-РНК. При этом происходит сравнение кодона и-РНК с антикодоном т-РНК: если они комплементарны, фермент (синтетаза) «сшивает» аминокислоты, а рибосома продвигается вперед на один кодон.
Таким образом, трансляция — это перевод последовательности нуклеотидов молекулы и-РНК в последовательность аминокислот синтезируемого белка.
Синтез белка требует участия большого числа ферментов, И для каждой отдельной реакции белкового синтеза требуются специализированные ферменты.
АТФ и ее роль. Образование АТФ в клетках животных.
АТФ – аденозинтрифосфорная кислота. АТФ – уникальный биологический аккумулятор энергии. Световая энергия Солнца и энергия, заключенная в потребляемой пище, запасаются в молекулах АТФ.
Молекула АТФ состоит из азотистого основания аденина, сахара рибозы и трех остатков фосфорной кислоты. Аденин, рибоза и первый фосфат образуют АМФ (аденозинмонофосфат). Если к первому фосфату присоединяется второй, получается АДФ (аденозиндифосфат). Молекула с тремя остатками фосфорной кислоты АТФ. Отщепление концевого фосфата АТФ сопровождается выделением энергии. Синтез АТФ осуществляется в митохондриях. Отсюда молекулы АТФ поступают в разные участки клетки, обеспечивая энергией процессы жизнедеятельности.
Синтез АТФ происходит главным образом в митохондриях (клеток животных) и в хлоропластах (растительные клетки). Образовавшаяся здесь АТФ по каналам эндоплазматического ретикулума направляется в те участки клетки, где возникает потребность в энергии.
Фотосинтез.
ФОТОСИНТЕЗ — образование клетками высших растений, водорослей и некоторыми бактериями органических веществ и выделение кислорода при участии энергии света.
Углекислый газ необходим растениям для жизни, он служит для растений настоящей пищей (вместе с водой и минеральными солями). Кислород в процессе фотосинтеза выделяется в качестве побочного продукта. Фотосинтез сумел изменить весь облик нашей планеты. 80% кислорода выделяется морскими водорослями и только 20% — наземными растениями. Поэтому океан иногда называют легкими планеты.
Хлорофилл играет в фотосинтезе главную роль. Процесс фотосинтеза многоступенчатый. Начало световой стадии происходит при попадании солнечного света на молекулу хлорофилла. Происходят сложные изменения с молекулами воды, выделение кислорода, восстановление энергетических запасов в виде АТФ. Дальше идет более длительная темновая стадия, где и происходит сборка углеводов, с использованием энергии, которая образовалась всветовой стадии и других соединений. Темновая стадия очень сложна и проходит при участии ферментов. Готовые органические вещества оттекают во все органы растения, но особенно много их откладывается в плодах, листьях, клубнях.
Из сахара в растении образуются жиры, а с присоединением получаемых из почвы азота, серы, фосфора — белки, которые используются организмом для роста.
Хлорофилл поглощает красные, синие лучи, а зеленые лучи почти не поглощает, поэтому мы видим лист зеленым.
В морские глубины красные лучи проникают плохо, поэтому в "тканях красных и бурых водорослей наряду с хлорофиллом есть и другие пигменты, поглощающие свет.
В результате фотосинтеза на Земле образуется 150 миллиардов тонн органического вещества и выделяется 200 миллиардов тонн свободного кислорода в год. Созданная фотосинтезом атмосфера защищает живое от губительного ультрафиолетового излучения (озоновый экран).
Хемосинтез.
ХЕМОСИНТЕЗ— тип питания бактерий, основанный на усвоении СО2 за счет окисления неорганических соединений. Хемосинтез был открыт в 1888 году русским биологом С.Н.Виноградским, доказавшим способность некоторых бактерий образовывать углеводы, используя химическую энергию. Существует несколько групп хемосинтезирующих бактерий, из которых наибольшее значение имеют нитрифицирующие, серобактерии и железобактерии. Например, нитрифицирующие бактерии получают энергию для синтеза органических веществ, окисляя аммиак до азотистой, а затем до азотной кислоты, серобактерии — окисляя сероводород до сульфатов, а железобактерии — превращая закисные соли железа в окисные. Освобожденная энергия аккумулируется в клетках хемобактерий в форме АТФ. Процесс хемосинтеза, при котором из СО2 образуется органическое вещество, протекает аналогично темновой фазе фотосинтеза. Благодаря жизнедеятельности бактерий-хемосинтетиков в природе накапливаются большие запасы селитры и болотной руды.
Митоз.
Способность к делению — важнейшее свойство клеток. Без деления невозможно представить себе увеличение числа одноклеточных существ, развитие сложного многоклеточного организма из одной оплодотворенной яйцеклетки, возобновление клеток, тканей и даже органов, утраченных в процессе жизнедеятельности организма.
Деление клеток осуществляется поэтапно. На каждом этапе деления происходят определенные процессы. Они приводят к удвоению генетического материала (синтезу ДНК) и его распределению между дочерними клетками. Период жизни клетки от одного деления до следующего называется клеточным циклом.
Подготовка к делению. Эукариотические организмы, состоящие из клеток, имеющих ядра, начинают подготовку к делению на определенном этапе клеточного цикла, в интерфазе.
Именно в период интерфазы в клетке происходит процесс биосинтеза белка, удваиваются все важнейшие структуры клетки. Вдоль исходной хромосомы из имеющихся в клетке химических соединений синтезируется ее точная копия, удваивается молекула ДНК. Удвоенная хромосома состоит из двух половинок — хроматид. Каждая из хроматид содержит одну молекулу ДНК.
Интерфаза в клетках растений и животных в среднем продолжается 10—20 ч. Затем наступает процесс деления клетки — митоз.
Во время митоза клетка проходит ряд последовательных фаз, в результате которых каждая дочерняя клетка получает такой же набор хромосом, какой был в материнской клетке.
Фазы митоза. Различают следующие четыре фазы митоза: профаза, метафаза, анафаза и телофаза. На рисунке 26 схематически показан ход митоза.
В профазе хорошо видны центриоли — образования, находящиеся в клеточном центре и играющие роль в расхождении дочерних хромосом животных. (Напомним, что у высших растений нет центриолей в клеточном центре, который организует расхождение хромосом.) Мы же рассмотрим митоз на примере животной клетки, поскольку присутствие центриоли делает процесс расхождения хромосом более наглядным. Центриоли удваиваются и расходятся к разным полюсам клетки. От центриолей протягиваются микротрубочки, образующие нити веретена деления, которое регулирует расхождение хромосом к полюсам делящейся клетки.
В конце профазы ядерная оболочка распадается, ядрышко постепенно исчезает, хромосомы спирализуются и в результате этого укорачиваются и утолщаются, и их уже можно наблюдать в световой микроскоп. Еще лучше они видны на следующей стадии митоза — метафазе.
В метафазе хромосомы располагаются в экваториальной плоскости клетки. При этом хорошо видно, что каждая хромосома, состоящая из двух хроматид, имеет перетяжку — центромеру. Хромосомы своими центромерами прикрепляются к нитям веретена деления. После деления центромеры каждая хроматида становится самостоятельной дочерней хромосомой.
Затем наступает следующая стадия митоза — анафаза, во время которой дочерние хромосомы (хроматиды одной хромосомы) расходятся к разным полюсам клетки.
Следующая стадия деления клетки — телофаза. Она начинается после того, как дочерние хромосомы, состоящие из одной хроматиды, достигли полюсов клетки. На этой стадии хромосомы вновь деспирализуются и приобретают такой же вид, какой они имели до начала деления клетки в интерфазе (длинные тонкие нити). Вокруг них возникает ядерная оболочка, а в ядре формируется ядрышко, в котором синтезируются рибосомы. В процессе деления цитоплазмы все органоиды (митохондрии, комплекс Гольджи, рибосомы и др.) распределяются между дочерними клетками более или менее равномерно.
Таким образом, в результате митоза из одной клетки получаются две, каждая из которых имеет характерное для данного вида организма число и форму хромосом, а следовательно, постоянное количество ДНК.
Весь процесс митоза занимает в среднем 1—2 ч. Продолжительность его несколько различна для разных видов клеток. Зависит он также и от условий внешней среды (температуры, светового режима и других показателей).
Биологическое значение митоза заключается в том, что он обеспечивает постоянство числа хромосом во всех клетках организма. В процессе митоза происходит распределение ДНК хромосом материнской клетки строго поровну между возникающими из нее двумя дочерними клетками. В результате митоза все дочерние клетки получают одну и ту же генетическую информацию.
Мейоз
Мейоз — способ деления клеток с образованием из одной материнской диплоидной клетки четырех дочерних гаплоидных клеток. Мейоз состоит из двух последовательных делений ядра и короткой интерфазы между ними.
Первое деление состоит из профазы I, метафазы I, анафазы I и телофазы I. В профазе I парные хромосомы, каждая из которых состоит из двух хроматид, подходят друг к другу (этот процесс называется конъюгацией гомологичных хромосом), перекрещиваются (кроссинговер), образуя мостики (хиазмы), затем обмениваются участками. При кроссинговере осуществляется перекомбинация генов. После кроссинговера хромосомы разъединяются.
В метафазе I парные хромосомы располагаются по экватору клетки; к каждой из хромосом прикрепляются нити веретена деления.
В анафазе I к полюсам клетки расходятся хромосомы из каждой гомологичной пары; при этом число хромосом у каждого полюса становится вдвое меньше, чем в материнской клетке.
Затем следует телофаза I — образуются две клетки с гаплоидным числом двухроматидных хромосом; поэтому первое деление мейоза называют редукционным. После телофазы I следует короткая интерфаза (в некоторых случаях телофаза I и интерфаза отсутствуют). В интерфазе между двумя делениями мейоза удвоения хромосом не происходит, т.к. каждая хромосома уже состоит из двух хроматид.
Второе деление мейоза отличается от митоза только тем, что его проходят клетки с гаплоидным набором хромосом; во втором делении иногда отсутствует профаза II.
В метафазе II двухроматидные хромосомы располагаются по экватору; процесс идет сразу в двух дочерних клетках.
В анафазе П к полюсам отходят уже однохроматидные хромосомы.
В телофазе II в четырех дочерних клетках формируются ядра и перегородки (в растительных клетках) или перетяжки (в животных клетках).
В результате второго деления мейоза образуются четыре клетки с гаплоидным набором хромосом (lnlc); второе деление называют уравнительным. Так образуются гаметы уживотных и человека или споры у растений.
Значение мейоза состоит в том, что создается гаплоидный набор хромосом и условия для комбинативной наследственной изменчивости за счет кроссинговера и вероятностного расхождения хромосом.
Отличие митоза от мейоза состоит в том, что митоз — это такое деление клетки, в результате которого получаются две клетки с исходным набором хромосом; митоз — это бесполый процесс размножения.
При мейозе в результате двух последовательных митотических делений из исходной диплоидной клетки (2n) образуются четыре гаплоидные (n). При этом происходит перекомбинация наследственных признаков вследствие кроссинговера, происходящего в профазе I мейоза.
Бесполое размножение.
Размножение, которое осуществляется без полового процесса путем отделения от материнского организма одной или нескольких клеток, называется бесполым. В бесполом размножении участвует только одна родительская особь. Поскольку клетки (или в случае простейших одна клетка), из которых развивается дочерний организм, делятся митозом, то дочерний организм сходен по наследственным признакам с материнской особью.
В природе встречается несколько видов бесполого размножения. У одноклеточных животных и растений (амебы, инфузории, некоторые водоросли) ядро вначале делится митозом надвое. Затем родительская особь путем перетяжки делится на две одинаковые части, каждая из которых образует дочерний организм. Такое размножение называется простым делением. Дочерние клетки ничем не отличаются от родителей, получая тот же набор хромосом.
Таким образом, в результате бесполого размножения воспроизводится большое количество генетически идентичных организмов. По наследственным задаткам они практически полностью копируют родительский организм.
(Гидра, мхи, папоротники, черви, моллюски- гермафродиты)
Половое размножение
В половом размножении принимают участие, как правило, две родительские особи, каждая из которых участвует в образовании нового организма, внося лишь одну половую клетку — гамету (яйцеклетку или сперматозоид), имеющую вдвое меньшее число хромосом, чем неполовые, т. е. соматические, клетки родителей. В результате слияния гамет образуется оплодотворенная яйцеклетка — зигота, несущая наследственные задатки обоих родителей, благодаря чему резко увеличивается наследственная изменчивость потомков. В этом заключается преимущество полового размножения над бесполым.
Довольно широко распространенной разновидностью полового размножения является партеногенез, при котором развитие нового организма происходит из неоплодотворенной яйцеклетки.
Иногда можно искусственно вызвать партеногенез у тех видов животных, у которых в природе он либо не происходит, либо происходит очень редко. Так, если уколоть иглой неоплодотворенное яйцо лягушки, то можно стимулировать его развитие и получить взрослую лягушку, которая возникнет из одной только половой клетки (яйцеклетки) и будет обладать, лишь, признаками матери.
Генетическое определение пола.
Пол у животных чаще всего определяется в момент оплодотворения. В этом случае важнейшая роль в генетическом определении пола принадлежит хромосомному набору зиготы.
В женском кариотипе все хромосомы парные. В мужском кариотипе всегда имеется одна крупная равноплечая непарная хромосома, не имеющая гомолога, и маленькая палочковидная хромосома, встречающаяся только в кариотипе мужчин. Таким образом, кариотип человека содержит 22 пары хромосом, одинаковых у мужского и женского организма, и одну пару хромосом, по которой различаются оба пола. Хромосомы, одинаковые у обоих полов, называют аутосомами. Хромосомы, по которым мужской и женский пол отличаются друг от друга, называют половыми или гетерохромосомами. Половые хромосомы у женщин одинаковы, их называют Х-хромосомами. У мужчин имеется Х-хромосома и одна Y-хромосома. При созревании половых клеток в результате мейоза гаметы получают гаплоидный набор хромосом. При этом все яйцеклетки имеют по одной Х-хромосоме. Пол, который образуют гаметы, одинаковые по половой хромосоме, называют гомогаметным и обозначается XX.