Фазовая модуляция
Фазовая модуляция - процесс изменения фазы несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.
Рассмотрим математическую модель фазо-модулированного (ФМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала
u(t) = Umu sin? t
на несущее колебание
S(t) = Um sin(?0t+?)
происходит изменение мгновенной фазы несущего сигнала по закону:
?фм(t) = ?0t+?+афм Umu sin? t (17)
где афм — коэффициент пропорциональности частотной модуляции.
Подставляя ?фм(t) в S(t) получаем математическую модель ФМ сигнала при гармоническом модулирующем сигнале:
Sфм(t) = Um sin(?0t+афм Umu sin? t+?) (18)
Произведение афм Umu=Djm называется индексом фазовой модуляции или девиацией фазы.
Поскольку изменение фазы вызывает изменение частоты, то используя (11) определяем закон изменения частоты ФМ сигнала:
?фм(t)=d?фм(t)/dt=w0+афмUmu? cos ? t (19)
Произведение афмUmu?=??m является девиацией частоты фазовой модуляции. Сравнивая девиацию частоты при частотной и фазовой модуляциях можно сделать вывод, что и при ЧМ и при ФМ девиация частоты зависит от коэффициента пропорциональности и амплитуды модулирующего сигнала, но при ФМ девиация частоты также зависит и от частоты модулирующего сигнала.
Временные диаграммы поясняющие процесс формирования ФМ сигнала приведены на рисунке 10.
При разложении математической модели ФМ сигнала на гармонические составляющие получится такой же ряд, как и при частотной модуляции (15), с той лишь разницей, что коэффициенты Jk будут зависеть от индекса фазовой модуляции ??m (Jk(??m)). Определятся эти коэффициенты будут аналогично, как и при ЧМ, т. е. по функциям Бесселя, с той лишь разницей, что по оси абсцисс необходимо заменить Мчм на ??m. Поскольку спектр ФМ сигнала строится аналогично спектру ЧМ сигнала, то для него характерны те же выводы что и для ЧМ сигнала (пункт 1.4).
Рисунок 10 - Формирование ФМ сигнала
Ширина спектра ФМ сигнала определяется выражением:
??фм=2(1+?jm)? (20).
Достоинствами фазовой модуляции являются:
· высокая помехоустойчивость;
· более эффективное использование мощности передатчика.
· недостатками фазовой модуляции являются:
· большая ширина спектра;
· сравнительная трудность получения модулированных сигналов и их детектирование
Дискретная двоичная модуляция (манипуляция гармонической несущей)
Дискретная двоичная модуляция (манипуляция) — частный случай аналоговой модуляции, при которой в качестве несущего сигнала используется гармоническая несущая, а в качестве модулирующего сигнала используется дискретный, двоичный сигнал.
Различают четыре вида манипуляции:
· амплитудную манипуляцию (АМн или АМТ);
· частотную манипуляцию (ЧМн или ЧМТ);
· фазовую манипуляцию (ФМн или ФМТ);
· относительно-фазовую манипуляцию (ОФМн или ОФМ).
Временные и спектральные диаграммы модулированных сигналов при различных видах манипуляции представлены на рисунке 11.
При амплитудной манипуляции, также как и при любом другом модулирующем сигнале огибающая SАМн(t) повторяет форму модулирующего сигнала (рисунок 11, в).
При частотной манипуляции используются две частоты ?1 и ?2. При наличии импульса в модулирующем сигнале (посылке) используется более высокая частота ?2, при отсутствии импульса (активной паузе) используется более низкая частота w1 соответствующая немодулированной несущей (рисунок 11, г)). Спектр частотно-манипулированного сигнала SЧМн(t) имеет две полосы возле частот ?1 и ?2.
При фазовой манипуляции фаза несущего сигнала изменяется на 180° в момент изменения амплитуды модулирующего сигнала. Если следует серия из нескольких импульсов, то фаза несущего сигнала на этом интервале не изменяется (рисунок 11, д).
Рисунок 11 - Временные и спектральные диаграммы модулированных сигналов различных видов дискретной двоичной модуляции
При относительно-фазовой манипуляции фаза несущего сигнала изменяется на 180° лишь в момент подачи импульса, т. е. при переходе от активной паузы к посылке (0?1) или от посылке к посылке (1?1). При уменьшении амплитуды модулирующего сигнала фаза несущего сигнала не изменяется (рисунок 11, е). Спектры сигналов при ФМн и ОФМн имеют одинаковый вид (рисунок 9, е).
Сравнивая спектры всех модулированных сигналов можно отметить, что наибольшую ширину имеет спектр ЧМн сигнала, наименьшую — АМн, ФМн, ОФМн, но в спектрах ФМн и ОФМн сигналов отсутствует составляющая несущего сигнала.
В виду большей помехоустойчивости наибольшее распространение получили частотная, фазовая и относительно-фазовая манипуляции. Различные их виды используются в телеграфии, при передаче данных, в системах подвижной радиосвязи (телефонной, транкинговой, пейджинговой).