Интегральная теорема Лапласа
Вновь предположим, что производится n испытаний, в каждом из которых вероятность появления события А постоянна и равна р (0 < р < 1). Как вычислить вероятность того, что событие А появится в n испытаниях не менее
и не более
раз (для краткости будем говорить «от
до
раз»)? На этот вопрос отвечает интегральная теорема Лапласа, которую мы приводим ниже.
Теорема. Если вероятность р наступления события А в каждом испытании постоянна и отлична от нуля и единицы, то вероятность того, что событие А появится в n испытаниях от
до
раз, приближенно равна определенному интегралу
,
где и
.
При решении задач, требующих применения интегральной теоремы Лапласа, пользуются специальными таблицами, так как неопределенный интеграл не выражается через элементарные функции. Таблица для интеграла
приведена в приложении (см. приложение 2). В таблице даны значения функции Ф(х) для положительных значений х и для х=0; для х<0 пользуются той же таблицей (функция Ф(х) нечетна, т. е. Ф(-х)=-Ф(х)). В таблице приведены значения интеграла лишь до х = 5, так как для х>5 можно принять Ф(х)=0,5. Функцию Ф(х) часто называют функцией Лапласа.
Итак, вероятность того, что событие А появится в n независимых испытаниях от до
раз,
,
где и
.
Пример. Вероятность того, что деталь не прошла проверку ОТК, равна р=0,2. Найти вероятность того, что среди 400 случайно отобранных деталей окажется непроверенных от 70 до 100 деталей.
Решение: По условию, р=0,2; q=0,8; n=400; =70;
=100. Воспользуемся интегральной теоремой Лапласа:
.
Вычислим нижний и верхний пределы интегрирования.
;
.
Таким образом, имеем
.
По таблице приложения 2 находим: Ф(2,5)=0,4938; Ф(1,25)=0,3944.
Искомая вероятность .