Тригонометрический ряд Фурье).

Ряд Фурье по тригонометрической системе функций

 

Тригонометрической системой функций называется система функций

Это – периодические функции.

Докажем два свойства периодических функций.

1) Если функцияимеет период,то функция имеет период .

Доказательство. .

2) Если функцияимеет период, то .

Доказательство. =

(делаем замену переменных в последнем интеграле )

.

Доказанные свойства позволяют

1) рассматривать тригонометрическую систему функций на любом отрезке длиной (период равен , ), например на отрезке ,

2) при вычислениях интегралов от функций с периодом, кратным , проводить интегрирование по любому отрезку длиной .

 

Так как элементы тригонометрической системы функций представляют собой непрерывные функции, то они сами и их квадраты (как произведение непрерывных функций) интегрируемы на отрезке . Поэтому можно рассматривать пространство L2 на отрезке и строить ряд Фурье.

Скалярное произведение функций введем так:

Для того, чтобы построить ряд Фурье по тригонометрической системе функций надо доказать, что эти функции попарно ортогональны на .

Теорема.Тригонометрическая система функцийсостоит из попарно ортогональных на отрезке функций.

Доказательство. . ,

,

 

Пусть .

Теорема доказана.

 

Вычислим скалярные квадраты элементов тригонометрической системы.

,

.

Составим ряд Фурье по тригонометрической системе функций

.

Коэффициенты Фурье вычисляются по формуле .

, ,

.

 

Теперь необходимо сформулировать условия, при которых функция представляется рядом Фурье по тригонометрической системе функций.