Представление некоторых элементарных функций по формуле Тейлора.
Применение формулы Тейлора для разложения функций в степенной ряд широко используется и имеет огромное значение при проведении различных математических расчетов. Непосредственное вычисление интегралов некоторых функций может быть сопряжено со значительными трудностями, а замена функции степенным рядом позволяет значительно упростить задачу. Нахождение значений тригонометрических, обратных тригонометрических, логарифмических функций также может быть сведено к нахождению значений соответствующих многочленов.
Если при разложении в ряд взять достаточное количество слагаемых, то значение функции может быть найдено с любой наперед заданной точностью. Практически можно сказать, что для нахождения значения любой функции с разумной степенью точности (предполагается, что точность, превышающая 10 – 20 знаков после десятичной точки, необходима очень редко) достаточно 4-10 членов разложения в ряд.
Применение принципа разложения в ряд позволяет производить вычисления на ЭВМ в режиме реального времени, что немаловажно при решении конкретных технических задач.
Функция f(x) = ex.
Находим: f(x) = ex, f(0) = 1
f¢(x) = ex, f¢(0) = 1
……………………
f(n)(x) = ex, f(n)(0) = 1
Тогда:
Пример: Найдем значение числа е.
В полученной выше формуле положим х = 1.
Для 8 членов разложения: e = 2,71827876984127003
Для 10 членов разложения: e = 2,71828180114638451
Для 100 членов разложения: e = 2,71828182845904553
Функция f(x) = sinx.
f(x) = sinx; f(0)
f¢(x) = cosx = sin( x + p/2); f¢(0) = 1;
f¢¢(x) = -sinx = sin(x + 2p/2); f¢¢(0) = 0;
f¢¢¢(x) = -cosx = sin(x + 3p/2); f¢¢¢(0)=-1;
……………………………………
f(n)(x) = sin(x + pn/2); f(n)(0) = sin(pn/2);
f(n+1)(x) = sin(x + (n + 1)p/2); f(n+1)(e) = sin(e + (n + 1)p/2);
Функция f(x) = cosx.
Для функции cosx, применив аналогичные преобразования, получим:
Функция f(x) = (1 + x)a.
(a - действительное число)
…………………………………………………..
Если в полученной формуле принять a = n, где n- натуральное число и f(n+1)(x)=0, то Rn+1 = 0, тогда
Получилась формула, известная как бином Ньютона.
Функция f(x) = ln(1 + x).
f(x) = ln(1 + x); f(0) = 0;
f¢(x) = ;
………………………………………
Полученная формула позволяет находить значения любых логарифмов (не только натуральных) с любой степенью точности. Ниже представлен пример вычисления натурального логарифма ln1,5. Сначала получено точное значение, затем – расчет по полученной выше формуле, ограничившись пятью членами разложения. Точность достигает 0,0003.
ln1,5 = 0,405465108108164381