Уравнения движения трехфазной фильтрации.

 

Уравнения движения I-фазы – фильтрации – можно описать законом Дарси, записанным для каждой фазы

 

(6.3)

I=1,2,3

где vi – скорость фильтрации I-фазы;

k –абсолютная проницаемость;

- относительная проницаемость I- фазы;

- динамическая вязкость I- фазы;

Pi- пластовое давление I-фазы;

- плотность I-фазы.

 

Давления в фазах вообще говоря не равны между собой и отличаются на величину капиллярного давления.

(6.4)

 

где Pk – капиллярное давление или капиллярный скачок.

Из курса физики пласта известно, что

 

(6.5)

где - коэффициент поверхностного натяжения;

- статический краевой угол смачивания между жидкостями и породой;

m- пористость;

- безразмерная функция Леверетта, которая определяется для каждого типа коллектора.

 

6.3 Уравнения неразрывности трех- и двухфазной фильтрации.

 

Из курса Механики сплошной среды известно, что уравнения неразрывности ( сплошности) можно представить в виде

 

I=1,2,3 (6.6)

Обозначения те же.

Для слабосжимаемых или несжимаемых жидкостей, в случае двухфазной фильтрации, имеем

 

I=1,2 (6.7)

 

Для непоршневого вытеснения нефти водой, учитывая что , уравнения (6.7) примут вид

 

(6.8)

Наиболее разработаны модели одномерного движения двухфазных жидкостей – прямолинейно-параллельное и плоскорадиальное течения.

 

Одномерные модели предполагают следующие допущения:

- жидкости несжимаемые и несмешиваемые;

- фазовые переходы отсутствуют;

- динамические вязкости -постоянны;

- относительные проницаемости и капиллярное давления являются известными функциями водонасыщенности;

- пористая среда несжимаема m- const.

при этих предположениях, полагая из (6.8) получим

 

(6.9)

Суммируя уравнения (6.9), получим

 

(6.10)

Поскольку , из (6.10) следует , что суммарная скорость фильтрации двух фаз не зависит от координат, а зависит только от времени

 

v(t)=vв(t)+vн(t) (6.11)

Из (6.11) следует, что суммарный объемный расход для прямолинейно-параллельного потока также зависит только от времени или может быть постоянным:

 

Q(t)=v(t)Bh (6.12)

где B,h – ширина и толщина галереи(пласта)

Для плоскорадиального потока объемный расход(дебит) зависит от времени и от r –расстояния до оси скважины;

Q(t)=v(t)2rh (6.13)

 

 

Полная система уравнений для описания двухфазной фильтрации состоит из 4-х уравнений движения (6.3), двух уравнений неразрывности (6.9), которые дополняются уравнениями состояния или реологическими уравнениями, начальными и граничными условиями.