Матрица смежности

Способы представления графов

Существует довольно большое число разнообразных способов представления графов. Однако мы изложим здесь только самые полезные с точки зрения программирования.

Матрица смежности Sm - это квадратная матрица размером NxN (N - количество вершин в графе), заполненная единицами и нулями по следующему правилу:

Если в графеимеется ребро e, соединяющее вершины u и v, то Sm[u,v] = 1, в противном случае Sm[u,v] = 0.

Заметим, что данное определение подходит как ориентированным, так и неориентированным графам: матрица смежности для неориентированного графа будет симметричной относительно своей главной диагонали, а для орграфа - несимметричной.

Задать взвешенный граф при помощи матрицы смежности тоже возможно. Необходимо лишь внести небольшое изменение в определение:

Если в графе имеется ребро e, соединяющее вершины u и v, то Sm[u,v] = ves(e), в противном случае Sm[u,v] = 0.

Это хорошо согласуется с замечанием, сделанным в предыдущем пункте: невзвешенный граф можно интерпретировать как взвешенный, все ребра которого имеют одинаковый вес 1.

Небольшое затруднение возникнет в том случае, если в графе разрешаются ребра с весом 0. Тогда придется хранить два массива: один с нулями и единицами, которые служат показателем наличия ребер, а второй - с весами этих ребер.

В качестве примера приведем матрицы смежности для трех графов, изображенных на рис. 11.5, рис. 11.6 и рис. 11.7 (см. рис. 11.8).

Таблица 11.8. Примеры матриц смежности
  a b c d f     a b c d
a a
b b
c c
d d
f          

Удобство матрицы смежности состоит в наглядности и прозрачности алгоритмов, основанных на ее использовании. А неудобство - в несколько завышенном требовании к памяти: если граф далек от полного, то в массиве, хранящем матрицу смежности, оказывается много "пустых мест" (нулей). Кроме того, для "общения" с пользователем этот способ представления графов не слишком удобен: его лучше применять только для внутреннего представления данных.