ЭДС самоиндукции

Если по проводнику протекает переменный ток, то вокруг этого проводника он создает переменный магнитный поток, который создает переменное потокосцепление, а нон в свою очередь порождает ЭДС.

Таким образом, ЭДС каждой катушки определяется алгебраической суммой ЭДС самоиндукции и взаимной индукции. Для определения знака ЭДС взаимной индукции размечают зажимы индуктивно связанных элементов цепи. Два зажима называют одноименными, если при одинаковом направлении токов относительно этих зажимов магнитные потоки самоиндукции и взаимной индукции складыва­ются. Такие выводы обозначают на схемах одинаковыми условными значками, например, точками или звездочками (рис. 2.20 а, б). Одинаково направленные токи и (рис. 2.20 а) относительно зажимов и вызывают совпадающие по направлению потоки самоиндукции () и взаимной индукции (). Следовательно, зажимы и являются одноименными. Одноименной является и другая пара зажимов и , но условными значками обозначают только одну пару одноимен­ных выводов, например, и (рис. 2.20 а). Если токи и направ­лены неодинаково относительно одноименных зажимов (рис. 2.20 б), то имеет место встречное направление потоков самоиндукции и взаимоиндукции.

На схемах магнитопроводы, как правило, не показывают и ограничиваются только обозначением одноименных зажимов (рис. 2.20 в, г).

Одноименные зажимы можно определить опытным путем. Для этого одну из катушек включают в цепь источника постоянного тока, а к другой присоеди­няют вольтметр постоянного тока. Если в момент подключения ис­точника стрелка измерительного прибора отклоняется, то зажимы индуктивно связанных

Рис. 2.20

катушек, подключенные к положительному полюсу источника и поло­житель­ному зажиму измерительного прибора, являются одноименными.

Определим знаки ЭДС и напряжения взаимной индукции. Допустим, пер­вая катушка (рис. 2.20 а) разомкнута, а во второй протекает ток . Выберем поло­жительные направления для одинаковыми относительно одноимен­ных зажимов. ЭДС и напряжение взаимной индукции равны, но противоположны по знаку. Действительно, когда 0, потенциал зажима b больше потенциала зажима а, следовательно, 0.

По правилу Ленца знаки и всегда противоположны, поэтому

.

В комплексной форме уравннеие имеет вид

(2.50)

При встречном включении катушек (рис. 2.20 б)

. (2.51)

Из (2.50) и (2.51) видно, что вектор напряжения на взаимной индуктивности сдвинут по фазе относительно вектора тока на угол ±90°.

Сопротивление называется сопротивлением взаимной индуктивно­сти, а – комплексным сопротивлением взаимной индуктивно­сти.

Таким образом, при согласном направлении токов падение напряжения на взаимной индуктивности имеет знак «плюс», при встречном – знак «минус».