ЭДС самоиндукции
Если по проводнику протекает переменный ток, то вокруг этого проводника он создает переменный магнитный поток, который создает переменное потокосцепление, а нон в свою очередь порождает ЭДС.
Таким образом, ЭДС каждой катушки определяется алгебраической суммой ЭДС самоиндукции и взаимной индукции. Для определения знака ЭДС взаимной индукции размечают зажимы индуктивно связанных элементов цепи. Два зажима называют одноименными, если при одинаковом направлении токов относительно этих зажимов магнитные потоки самоиндукции и взаимной индукции складываются. Такие выводы обозначают на схемах одинаковыми условными значками, например, точками или звездочками (рис. 2.20 а, б). Одинаково направленные токи и
(рис. 2.20 а) относительно зажимов
и
вызывают совпадающие по направлению потоки самоиндукции
(
) и взаимной индукции
(
). Следовательно, зажимы
и
являются одноименными. Одноименной является и другая пара зажимов
и
, но условными значками обозначают только одну пару одноименных выводов, например,
и
(рис. 2.20 а). Если токи
и
направлены неодинаково относительно одноименных зажимов (рис. 2.20 б), то имеет место встречное направление потоков самоиндукции и взаимоиндукции.
На схемах магнитопроводы, как правило, не показывают и ограничиваются только обозначением одноименных зажимов (рис. 2.20 в, г).
Одноименные зажимы можно определить опытным путем. Для этого одну из катушек включают в цепь источника постоянного тока, а к другой присоединяют вольтметр постоянного тока. Если в момент подключения источника стрелка измерительного прибора отклоняется, то зажимы индуктивно связанных
Рис. 2.20
катушек, подключенные к положительному полюсу источника и положительному зажиму измерительного прибора, являются одноименными.
Определим знаки ЭДС и напряжения взаимной индукции. Допустим, первая катушка (рис. 2.20 а) разомкнута, а во второй протекает ток . Выберем положительные направления для
одинаковыми относительно одноименных зажимов. ЭДС и напряжение взаимной индукции равны, но противоположны по знаку. Действительно, когда
0, потенциал зажима b больше потенциала зажима а, следовательно,
0.
По правилу Ленца знаки и
всегда противоположны, поэтому
.
В комплексной форме уравннеие имеет вид
(2.50)
При встречном включении катушек (рис. 2.20 б)
. (2.51)
Из (2.50) и (2.51) видно, что вектор напряжения на взаимной индуктивности сдвинут по фазе относительно вектора тока
на угол ±90°.
Сопротивление называется сопротивлением взаимной индуктивности, а
– комплексным сопротивлением взаимной индуктивности.
Таким образом, при согласном направлении токов падение напряжения на взаимной индуктивности имеет знак «плюс», при встречном – знак «минус».