ИСТОРИЧЕСКАЯ СПРАВКА

 

Компьютер – это электронное устройство для автоматизации процессов создания, хранения, воспроизведения, обработки и транспортировки данных. Компьютер представляет собой комплекс аппаратного и программного обеспечения.

Механические предшественники.

«Суммирующие часы» Вильгельма Шикарда(1623 г., Германия).

Калькулятор Блеза Паскаля (1642 г., Франция).

Калькулятор Готфрида Вильгельма Лейбница (1673 г., Германия).

Аналитическая машина Чарльза Бэббиджа (1832 г., Англия). Впервые реализован принцип разделения информации на команды и данные (склад и мельница). Огаста Ада Лавлейс – ей принадлежит идея использования перфорированных карт для программирования вычислительных операций.

Вычислительная техника на основе электромагнитных реле. Счетно-перфорационные комплексы Г.Холлерита (1887 г.) для обработки результатов переписи населения, универсальные вычислительные машины с программным управлением (модель Z-3 К. Цузе,1941 г., модель MARK-2 Г. Айкена, 1947 г.).

Математические основы электронных устройств. Двоичная система Лейбница и математическая логика Джорджа Буля (создатель логической алгебры или булевой алгебры) (первая половина XIX века, Англия).

Первая ЭВМ – на электронных лампах (1946 г., США, ENIAC, вес – 30 тонн, 18 тыс. электронных ламп, мощность 140 кВт, размеры: 4 x 30 x 6 м, 5000 операций сложения/с, оперативная память – 600 бит, проработала почти 10 лет).

Первая отечественная ЭВМ - на электронных лампах (1950 г., СССР, МЭСМ, 5000 операций сложения/с, оперативная память – 1800 бит).

Первый персональный компьютер (1976 г., фирма Apple, частота процессора 1 МГц, оперативная память – 48 Кбайт).

Персональный компьютер IBM – IBM PC/XT (1983 г., процессор Intel 8086, частота процессора 10 МГц, оперативная память – 640 Кбайт, НЖМД – 10 Мбайт, НГМД – 360 Кбайт).

 

Информационные революции.

В истории цивилизации выделяют несколько информационных революций, в ходе которых существенно менялись средства и способы хранения и распространения информации, доступность информации активной части населения.

Первая информационная революция. Около 10 тыс. лет до н.э. Появление языка и членораздельной речи.

Вторая информационная революция. Появление письменности. Письменность шумеров – 5 тыс. лет назад, алфавит в Греции – 700 лет до н.э.

Третья информационная революция. Изобретение книгопечатания. Первая книга появилась в Китае в конце VII в.

Четвертая информационная революция. Связана с широким распространением электрической связи в виде телеграфа, телефона, радио. Началась в конце XIX в. Здесь же надо упомянуть фотографию (1839 г.), фонограф Эдисона (1889 г.) и кино (1895 г.). Вершина этой революции – телевидение (!933 г).

Пятая информационная революция. Появление в середине XX в. электронной цифровой вычислительной техники. Предыдущие революции развивали средства хранения и распространения информации. Пятая революция привела к небывалому развитию средств и способов обработки информации.

 

Технические средства ЭВМ.

В настоящее время вычислительная техника успешно применяется во всех областях научной и практической деятельности человека. Освоение современных информационных технологий требует от инженерных работников не только знания программных средств в соответствующей проблемной области, но и понимания принципов функционирования ЭВМ, а также четкого представления о назначении и возможностях отдельных технических устройств, применяемых в вычислительной технике.

Структурная схема ЭВМ

Рассматривается классическая архитектура ЭВМ, базирующаяся на принципах фон Неймана.

В составе ЭВМ выделяют центральную (обрабатывающую) часть, к которой относят систему соединенных между собой одного или нескольких процессоров и памяти, и группу разнообразных периферийных (внешних) устройств, реализующих функции ввода - вывода информации. Во вторую группу обычно включают и внешние запоминающие устройства (ВЗУ), предназначенные для хранения больших объемов информации. Взаимосвязь указанных устройств между собой осуществляется посредством специальной системы ввода - вывода, принципы построения и структура которой определяется типом ЭВМ. В частности, в персональных ЭВМ система ввода - вывода организована по принципу единого интерфейса, когда все устройства, в совокупности образующие ЭВМ, подключены к единой магистрали (общей шине). Такая организация позволяет обеспечить минимизацию числа связей и аппаратных средств для обмена информацией между различными устройствами и, как следствие, компактность и экономичность.

Основное место в структуре ЭВМ занимает центральный процессор, который непосредственно осуществляет процесс обработки данных и программное управление этим процессом, а также координирует взаимодействие всех устройств. Он расшифровывает и выполняет команды программы, организует обращения к оперативной памяти, в необходимых случаях инициирует работу периферийных устройств, принимает и обрабатывает запросы, поступающие из различных устройств ЭВМ.

В составе процессора выделяют арифметико-логическое устройство (АЛУ) и устройство управления. Кроме этого, процессор содержит внутренние регистры, совокупность которых определяет его логическую организацию.

АЛУ выполняет арифметические операции с числами и производит логические операции над операндами, под которыми понимаются группы последовательно размещенных байт, представляющие собой данные для машинной команды. В функции устройства управления входит координация работы всех устройств ЭВМ. С этой целью оно вырабатывает и своевременно выдает управляющие сигналы, например на АЛУ для выполнения той или иной операции или на внешнее устройство для обмена информации. Регистры - это отдельно расположенные и отдельно адресуемые элементы памяти фиксированного размера, предназначенные для хранения информации и быстрого доступа к ней. Блок регистров используется для запоминания текущих команд и промежуточных результатов выполняемых операций. Здесь же содержатся сведения о состоянии процессора и других устройств ЭВМ, запросы на прерывание вычислительного процесса и другая подобная информация.

Память состоит из запоминающих элементов и предназначена для записи, хранения и считывания данных и программ. Память обычно является адресной. Это значит, что каждой хранимой единице информации (байту, слову) ставится в соответствие специальное число - адрес, определяющий место ее хранения в памяти. Запись или считывание информации осуществляются только при указании ее адреса. Минимальной адресуемой в памяти единицей информации является байт.

Любая ЭВМ работает под управлением программы, реализующей в виде последовательности машинных команд алгоритм решения задачи. Под командой понимают совокупность сведений (в виде двоичных кодов), необходимых процессору для выполнения требуемого действия, а именно: сведения о типе операции и адресная информация о местонахождении обрабатываемых данных (операндов) и месте хранения результата. Команда содержит также в явной или неявной форме информацию об адресе следующей команды. Множество реализуемых процессором действий образует систему его команд.

Центральные устройства персональных ЭВМ.

В персональных ЭВМ функции центрального процессора выполняет микропроцессор (МПр), который представляет собой сверхбольшую интегральную схему, реализованную в едином полупроводниковом кристалле. Производительность ПЭВМ во многом определяется быстродействием МПр.

Основными характеристиками МПр, определяющими его производительность, являются:

- тактовая частота;

- степень интеграции (технологические нормы);

- разрядность обрабатываемых данных;

- технология обработки

Тактовая частота - это частота, с которой МПр выполняет все операции. Большинство элементов ПЭВМ разработано таким образом, чтобы работать синхронно, то есть по определенным сигналам. Эти сигналы задаются электронным устройством, называемым тактовым генератором. Главным элементом этого устройства является кристалл кварца, который при подаче на него электрического напряжения вырабатывает импульсы строго определенной частоты. Обработка информации тем быстрее, чем выше тактовая частота. Применение технологии умножения частоты позволяет повысить скорость работы внутренних блоков МПр. В этом случае говорят о внутренней и внешней тактовой частоте. Первая характеризует скорость обработки данных внутри МПр, а вторая - скорость выполнения операций обмена. Значение внутренней тактовой частоты получается путем умножения внешней частоты на некоторый коэффициент (1,5;2;2,5;3 и т.д.).

Степень интеграции определяется размером кристалла и количеством реализованных в нем транзисторов, или, как говорят, технологическими нормами, под которыми понимают минимальные размеры транзисторов. Повышение степени интеграции позволяет МПр работать на более высокой внутренней тактовой частоте за счет более высокой синхронизации сигналов между его функциональными узлами, так как при сокращении расстояния между транзисторами уменьшается задержка передачи сигналов, проходящих по ним. Кроме этого, переход на более “компактную” структуру позволяет снизить энергопотребление и тепловыделение МПр.

Внутреняя разрядность или разрядность внутренних регистров определяется количеством бит, одновременно обрабатываемых внутри МПр, а внешняя - количеством бит, которым МПр может обмениваться с другими элементами ЭВМ.

Помимо указанных выше факторов производительность МПр зависит от технологии обработки команд и данных. В составе современных МПр имеются несколько исполнительных устройств. Это позволяет одновременно обрабатывать несколько инструкций. Обработка ведется в так называемом конвейерном режиме. Для повышения эффективности заполняемости конвейеров предусмотрен механизм предсказания того, какая инструкция должна обрабатываться следующей.