ВОДОХРАНИЛИЩЕ, НИЖНИЙ БЬЕФ И ИХ ХАРАКТЕРИСТИКИ.
Основным назначением водохранилищ гидроэлектростанций является трансформация естественного, обычно неравномерного, режима речного стока в режим, необходимый для отдельных отраслей народного хозяйства и, в частности, энергетики. Кроме того, в некоторых случаях назначением водохранилищ является борьба с наводнением в нижнем бьефе во время половодий. В этих случаях определенное количество воды задерживается в водохранилище, благодаря чему расходы воды в нижнем бьефе становятся существенно меньшими естественных расходов половодий.
Водохранилища создаются путем устройства на реках или других водотоках плотин, повышающих уровни воды и образующих необходимой емкости водоемы (рис. 1). На этом рисунке цифрами обозначены горизонтали поверхности местности.
Рис.1 Схема водохранилища
Верхний предел уровня воды, при котором ГЭС и сооружения гидроузла работают длительное время с соблюдением нормальных запасов надежности, предусматриваемых техническими условиями, носит название нормального подпорного уровня (НПУ) Объем водохранилища при этом уровне носит название полного объема и обозначается Vполн.
Нижний предел или уровень мертвого объема (УМО) определяется условиями получения на ГЭС расчетных параметров. Соответствующий объем носит название мертвого Vмо.
Разность между полным и мертвым объемами составляет полезный объем водохранилища.
Vполезн=Vполн-Vмо
Этот объем используется для регулирования стока.
При пропуске катастрофических половодий и паводков обычно допускается кратковременное повышение уровня воды в водохранилище до отметки, называемой форсированным подпорным уровнем (ФПУ).
Объем водохранилища между отметками НПУ и ФПУ является резервным и используется для трансформации (срезки) половодий и паводков.
До сих пор принималось, что поверхность воды в водохранилище по всей его длине устанавливается горизонтально, образуя так называемый его статический объем. Очевидно, это может быть лишь в том случае, когда приточность в водохранилище отсутствует. Так как в действительности в водохранилище вceгда имеется приток воды, то, строго говоря, поверхность воды по его длине не будет горизонтальной. Это особенно относится к его «хвостовой части», где кривая свободной поверхности воды представляет собой кривую подпора, характеризующую изменение уровня поверхности воды по длине водотока. Образовавшийся объем называется динамическим объемом водохранилища (рис. 2). Величина его определяется в основном значением расхода приточности и во время половодий может быть весьма значительной.
В водноэнергетических расчетах широко используются различные графические зависимости, отражающие функциональные связи между различными параметрами водохранилища (так называемые характеристики водохранилищ). К их числу относится прежде всего топографическая характеристика, которая может быть двух видов — статической и динамической.
Статическая характеристика включает в себя две кривые. Первая— зависимость отметок уровня от объема водохранилища Zнб=Zнв(V) и обычно называемая объемной. Вторая отражает связь между отметками уровня и площадью зеркала водохранилища Zнб=Zнв(F). Эту характеристику называют площадной.
Обе характеристики (рис. 3) получаются в результате обработки топографических планов местности.
Рис. 2 Динамическая емкость водохранилища
При учете динамической емкости, как было показано выше, объем водохранилища при заданной отметке уровня в створе плотины будет определяться приточностью. Вследствие этого зависимость между значениями уровня и объемом водохранилища будет иметь другой характер, так как будет функцией двух переменных Zнб=Zнв(V,Qприт). Эти кривые (рис. 4) называются кривыми динамического объема в отличие от кривой статического объема, изображенной на рис. 3, или кривой, соответствующей Qприт=0.
Имеются и другие характеристики водохранилища, которые мы здесь не рассматриваем. Все они являются основным исходным материалом для проведения водноэнергетических расчетов. В такого рода расчетах одним из решающих условий правильности выполнения их является соблюдение водного баланса водохранилища.
В общем виде уравнение водного баланса водохранилища без холостых' сбросов за некоторое время Т может быть представлено следующим равенством:
Wрег=Wприт±ΔV— Wзаб+Wвозвр—Wпот, (1)
где Wрег— зарегулированный объем стока, т. е. тот объем воды, который прошел за время Т через створ гидроузла (так называемая отдача); Wприт — приток воды в водохранилище за время Т (для одиночной ГЭС это бытовой, т. е. естественный, приток, для каскада — приток от вышележащей ГЭС с учетом боковой приточности между створами); Δ V— использованный объем водохранилища за период Т. (В формуле знак минус относится к периоду наполнения, знак плюс — к периоду сработки водохранилища); Wзаб и Wвозвр- величины забираемого из водохранилища и' возвращаемого в него участниками водохозяйственного комплекса за время Т объема стока; Wпот — потери воды из водохранилища за время Т и обычно включают потери на фильтрацию, испарение, льдообразование и шлюзование.
Если каждый член этого уравнения разделить на время Т, то условие баланса стока может быть выражено через соответствующие расходы.
Рис. 3 Кривые статического объема и площади зеркала водохранилища Рис.4 Кривые динамических объемов водохранилища
Рассмотрим теперь характеристику нижнего бьефа. Уровень воды в нижнем бьефе ГЭС определяется тем расходом, который пропускается через турбины или какие-либо другие сооружения (шлюзы, водосбросы) гидроэлектростанции.
При установившемся равномерном движении уровни воды в нижнем бьефе однозначно связаны с протекающим расходом. Эта связь обычно определяется с помощью так называемой кривой связи, отражающей в графическом виде зависимость уровней от расходов Zнб= Zнб(Qнб). Такая кривая представлена на рис. 5.
Рис.5 Кривые связи нижнего бьефа без подпора для зимы и лета
Зимой при переменном расходе ГЭС в ее нижнем бьефе на берегах образуются наледи, которые уменьшают площадь живого сечения. Поэтому при одних и тех же отметках уровня зимой будет проходить расход меньше, чем летом, и зимняя кривая связи соответственно будет выше, чем летняя (рис. 5 и 6).
Рис. 6 Кривые связи нижнего бьефа с подпором для зимы и лета
При каскадном расположении ГЭС, если нижний бьеф рассматриваемой ГЭС (обозначим ее № 1) подпирается плотиной нижележащей (ГЭС № 2), то в функциональной зависимости уровня нижнего бьефа от расхода ГЭС № 1 появится дополнительный аргумент — отметка верхнего бьефа водохранилища второй ГЭС Zвб2 (рис. 69). В этом случае рассматриваемая функция будет иметь вид
Zнб1=Zнб1(Qнб1,Zвб2). (2)
При неустановившемся движении воды в нижнем бьефе однозначная связь между отметками уровня и расходом нарушается и определение того или другого требует достаточно сложных расчетов, которые сейчас проводятся исключительное помощью ЭВМ.