Усилительный каскад с последовательной ООС по току
Схема каскада с последовательной ООС по току (ПООСТ) на ПТ с ОИ приведена на рис. 3.3.
При ПООСТ в выходной цепи усилителя последовательно с нагрузкой включается специальная цепь (на рис. 3.3 это ), напряжение на которой
пропорционально выходному току. Во входной цепи усилителя
алгебраически складывается с входным напряжением.
В области СЧ (=0) можно записать
.
Проведя анализ каскада по методике подраздела 2.3, получим:
.
Поскольку (см. подразд. ?.?), то при глубокой ООС (γ>10)
. Из полученного выражения следует, что ПООСТ обеспечивает стабильность усиления по напряжению при условии постоянства нагрузки.
С помощью ПООСТ удается уменьшить нелинейные искажения в УУ, поскольку с увеличением γ будет уменьшаться напряжение управления усилителем, его работа станет осуществляться на меньшем участке ВАХ активного элемента (транзистора), а это приведет к уменьшению коэффициента гармоник. В подразд. ?.? приведены расчетные соотношения для коэффициента гармоник усилителя, охваченного ООС последовательного типа. Приближенно оценить влияние ПООСТ на коэффициент гармоник можно по соотношению:
.
Все вышесказанное в равной мере относится и к каскаду на БТ с ОЭ и ПООСТ (схема каскада не приводится ввиду идентичности ее топологии схеме рис. 3.3).
Входное сопротивление усилителя с ООС определяется способом подачи напряжения ОС во входную цепь. Согласно элементарной теории ОС, ПООСТ увеличивает входное сопротивление усилителя в γ раз, т.е.
.
Выражение для входного сопротивления каскада с ОЭ на БТ с ПООСТ, определенное по методике подразд. 2.3, имеет вид:
.
При известных допущениях последние два выражения дают близкие результаты.
Входное сопротивление каскада с ОИ на ПТ определяется (см. подразд. ?.?), поэтому практически не меняется при охвате каскада ПООСТ.
Выходное сопротивление усилителя с ООС определяется способом снятия напряжения ОС с нагрузки усилителя. Согласно элементарной теории ОС, ПООСТ увеличивает выходное сопротивление усилителя в γ раз, т.е.
.
На СЧ выходное сопротивление каскадов на ПТ (ОИ) и БТ (ОЭ) определяется в большинстве случаев соответственно номиналами и
, поэтому данная ООС его практически не меняет.
На рис. 3.3б приведена схема каскада с ОИ и ПООСТ в области ВЧ. Данный каскад еще носит название каскада с истоковой коррекцией, т.к. основной целью введения в каскад ООС является коррекция АЧХ в области ВЧ.
Поскольку цепь ООС () частотнозависима, то |γ| с ростом частоты уменьшается относительно своего значения на СЧ, что приводит к относительному возрастанию
на ВЧ. С точки зрения коррекции временных характеристик, уменьшение
каскада объясняется зарядом
, что приводит к медленному нарастанию
, и, следовательно, к увеличению коэффициента усиления в области МВ, а это, в свою очередь, сокращает время заряда
, которое, собственно, и определяет
.
Анализ влияния ПООСТ вначале проведем для случая резистивной цепи ОС (=0). Учитывая, что крутизна ПТ практически не зависит от частоты (см. подразд. ?.?.?), можно сказать, что во всем диапазоне рабочих частот глубина ООС γ=const, уменьшение коэффициента усиления по всему диапазону рабочих часто одинаково и коррекция отсутствует.
Воспользовавшись рекомендациями подразд. ?.?, получим выражение для комплексного коэффициента передачи каскада с токовой коррекцией (цепь ОС комплексная, ) на ВЧ:
,
где .
Анализ полученного выражения упрощается в предположении . При этом условии имеем:
,
где (см. так же подразд. ?.?).
Уменьшение постоянной времени каскада в области ВЧ приводит к увеличению верхней граничной частоты (уменьшению
) каскада. Площадь усиления каскада с ОИ и истоковой коррекцией при этом не меняется:
.
Расчет каскада с истоковой коррекцией в области НЧ ничем не отличается от расчета некорректированного каскада за исключением того, что формула для постоянной времени цепи истока будет выглядеть иначе:
.
В зависимости от цели введения ООС в каскад, глубину ООС можно определить по следующим соотношениям:
, либо
.
При этом и
. Каскад с ОЭ и ПООСТ еще носит название каскада с эмиттерной коррекцией.
В отличие от ПТ, в БТ крутизна частотнозависима, поэтому даже при частотно-независимой цепи ООС (=0) наблюдается эффект коррекции АЧХ и ПХ за счет уменьшения глубины ООС на ВЧ:
,
где (см. так же подразд. 2.5).
Нетрудно увидеть, что эмиттерная коррекция каскада на БТ при частотно-независимой цепи ООС (=0) эффективна при
, т.е. в каскадах с малой емкостью нагрузки.
Воспользовавшись рекомендациями подразд. ?.?, получим выражение для комплексного коэффициента передачи каскада с эмиттерной коррекцией в области ВЧ:
,
где ,
.
Эмиттерная коррекция позволяет значительно увеличить (уменьшить
) при заданных величинах подъема АЧХ на ВЧ (выброса ПХ d в области МВ). Готовые таблицы и графики для расчета каскада с эмиттерной коррекцией приведены в [?].
Входная емкость каскада с ПООСТ уменьшиться примерно в γ раз:
.
Расчет каскада с ОЭ и ПООСТ в области НЧ ничем не отличается от каскада без ОС (следует только учитывать изменение при расчете постоянных времени разделительных цепей), исключение составляет расчет постоянной времени цепи эмиттера:
.