Введение

Нейрокомпьютерные системы базируются на теории нейронных сетей, которые включают широкий круг вопросов из разных областей науки: биофизики, математики, информатики, схемотехники и технологии. Поэтому понятие "нейронные сети" детально определить сложно.

Искусственные нейронные сети (НС) — совокупность моделей биологических нейронных сетей. Они представляют собой сеть элементов — искусственных нейронов — связанных между собой синаптическими соединениями. Сеть обрабатывает входную информацию и в процессе изменения своего состояния во времени формирует совокупность выходных сигналов.

Работа сети состоит в преобразовании входных сигналов во времени, в результате чего меняется внутреннее состояние сети и формируются выходные воздействия. Обычно НС оперирует цифровыми, а не символьными величинами.

Большинство моделей НС требуют обучения. В общем случае, обучение такой выбор параметров сети, при котором сеть лучше всего справляется с поставленной проблемой. Обучение — это задача многомерной оптимизации, для решения которой существует множество алгоритмов.

Искусственные нейронные сети — набор математических и алгоритмических методов для решения широкого круга задач. Выделим характерные черты искусственных нейросетей как универсального инструмента для решения задач:

1. НС дают возможность лучше понять организацию нервной системы человека и животных на средних уровнях: память, обработка сенсорной информации, моторика.

2. НС — средство обработки информации:

а) гибкая модель для нелинейной аппроксимации многомерных функций;

б) средство прогнозирования во времени для процессов, зависящих от многих переменных;

в) классификатор по многим признакам, дающий разбиение входного пространства на области;

г) средство распознавания образов;

д) инструмент для поиска по ассоциациям;

г) модель для поиска закономерностей в массивах данных.

3. НС свободны от ограничений обычных компьютеров благодаря параллельной обработке и сильной связанности нейронов.

4. В перспективе НС должны помочь понять принципы, на которых построены высшие функции нервной системы: сознание, эмоции, мышление.

Существенную часть в теории нейронных сетей занимают биофизические проблемы. Для построения адекватной математической модели необходимо детально изучить работу биологических нервных клеток и сетей с точки зрения химии, физики, теории информации и синергетики. При этом должны быть известны ответы на следующие основные вопросы:

1. Как работает нервная клетка — биологический нейрон? Необходимо иметь математическую модель, адекватно описывающую информационные процессы в нейроне. Какие свойства нейрона важны при моделировании, а какие — нет?

2. Как передается информация через соединения между нейронами синапсы? Как меняется проводимость синапса в зависимости от проходящих по нему сигналов?

3. По каким законам нейроны связаны друг с другом в сеть? Откуда нервная клетка знает, с какими соседями должно быть установлено соединение?

4. Как биологические нейронные сети обучаются решать задачи? Как выбираются параметры сети, чтобы давать правильные выходные сигналы? Какой выходной сигнал считается "правильным", а какой — ошибочным?

Выделим важнейшие свойства биологических нейросетей:

1. Параллельность обработки информации. Каждый нейрон формирует свой выход только на основе своих входов и собственного внутреннего состояния под воздействием общих механизмов регуляции нервной системы.

2. Способность к полной обработке информации. Все известные человеку задачи решаются нейронными сетями. К этой группе свойств относятся ассоциативность (сеть может восстанавливать полный образ по его части), способность к классификации, обобщению, абстрагированию и множество других. Они до конца не систематизированы.

3. Самоорганизация. В процессе работы биологические НС самостоятельно, под воздействием внешней среды, обучаются решению разнообразных задач. Неизвестно никаких принципиальных ограничений на сложность задач, решаемых биологическими нейронными сетями. Нервная система сама формирует алгоритмы своей деятельности, уточняя и усложняя их в течение жизни. Человек пока не сумел создать систем, обладающих самоорганизацией и самоусложнением. Это свойство НС рождает множество вопросов, т.к. каждая замкнутая система в процессе развития упрощается, деградирует. Следовательно, получение энергии нейронной сетью имеет принципиальное значение. К настоящему времени не установлено, почему среди всех диссипативных (рассеивающих энергию) нелинейных динамических систем только у живых существ, и, в частности, биологических нейросетей проявляется способность к усложнению?

4. Биологические НС являются аналоговыми системами. Информация поступает в сеть по большому количеству каналов и кодируется по пространственному принципу: вид информации определяется номером нервного волокна, по которому она передается. Амплитуда входного воздействия кодируется плотностью нервных импульсов, передаваемых по волокну.

5. Надежность. Биологические НС обладают фантастической надежностью: выход из строя даже 10% нейронов в нервной системе не прерывает ее работы. По сравнению с последовательными ЭВМ, основанными на принципах фон Неймана, где сбой одной ячейки памяти или одного узла в аппаратуре приводит к краху системы.

Современные искусственные НС по сложности и "интеллекту" приближаются к нервной системе таракана, но уже сейчас демонстрируют ценные свойства:

1. Обучаемость. Выбрав одну из моделей НС, создав сеть и выполнив алгоритм обучения, мы можем обучить сеть решению задачи, которая ей по силам. Нет никаких гарантий, что это удастся сделать при выбранных сети, алгоритме и задаче, но если все сделано правильно, то обучение бывает успешным.

2. Способность к обобщению. После обучения сеть становится нечувствительной к малым изменениям входных сигналов (шуму или вариациям входных образов) и дает правильный результат на выходе.

3. Способность к абстрагированию. Если предъявить сети несколько искаженных вариантов входного образа, то сеть сама может создать на выходе идеальный образ, с которым она никогда не встречалась.