Решение

Пример 3

Решение

Пример 2

Решение

Пример 1

В ящике 5 пронумерованных шаров с номерами от 1 до 5. Вынули один шар. Какова вероятность того, что номер вынутого шара не превышает 5.

Так как номер шара не превышает 5, то число случаев, благоприятных событию A, равно числу всех случаев .

.

A – событие достоверное.

Бросают две игральные кости. Какое событие более вероятно: сумма очков на выпавших гранях равна 11 или сумма очков на выпавших гранях равна 4?

Поставим в соответствие исходу эксперимента упорядоченную пару чисел , где x – число очков выпавших на первой кости, а y – на второй.

Пространство всех элементарных событий состоит из множества пар , где и принимают значения от 1 до 6. Число таких пар 36. Событию A, состоящему в том, что сумма очков, выпавших на двух костях, равна 11, благоприятны два элементарных события и . Событию B, состоящему в том, что сумма очков, выпавших на двух костях равна 4, благоприятны три элементарных события, которым соответствуют , , .

.

и, следовательно, событие более вероятно.

Из 15 строительных рабочих 10 штукатуров, а 5 – маляры. Наудачу отбирается бригада 5 рабочих. Какова вероятность того, что среди них будет 3 маляра и 2 штукатура?

Пространство элементарных событий состоит из различных выборок по 5 из 15. Число таких выборок равно . Благоприятным событиям соответствуют выборки, содержащие трех маляров и двух штукатуров.

Трех маляров из пяти можно выбрать способами, а двух штукатуров из десяти . Следовательно, число выборок, соответствующих благоприятным событиям, равно .

Таким образом .

При классическом определении вероятности не всегда можно определить числа m и n для вычисления вероятностей событий, и поэтому непосредственно воспользоваться формулой не удается.