Предельные теоремы
Теорема Пуассона
В случае, если вероятности появления события А в каждом опыте различны, то справедлива следующая теорема, известная как теорема Пуассона.
Теорема. Если производится п независимых опытов и вероятность появления события А в каждом опыте равна рi, то при увеличении п частота события А сходится по вероятности к среднему арифметическому вероятностей рi.
Как уже говорилось, при достаточно большом количестве испытаний, поставленных в одинаковых условиях, характеристики случайных событий и случайных величин становятся почти неслучайными. Это позволяет использовать результаты наблюдений случайных событий для предсказания исхода того или иного опыта.
Предельные теоремы теории вероятностей устанавливают соответствие между теоретическими и экспериментальными характеристиками случайных величин при большом количестве испытаний.
В рассмотренном выше законе больших чисел нечего не говорилось о законе распределения случайных величин.
Поставим задачу нахождения предельного закона распределения суммы
когда число слагаемых п неограниченно возрастает. Эту задачу решает Центральная предельная теорема Ляпунова.
В зависимости от условий распределения случайных величин Xi, образующих сумму, возможны различные формулировки центральной предельной теоремы.
Допустим, что случайные величины Xi взаимно независимы и одинаково распределены.
Теорема. Если случайные величины Xi взаимно независимы и имеют один и тот же закон распределения с математическим ожиданием т и дисперсией s2, причём существует третий абсолютный момент n3, то при неограниченном увеличении числа испытаний п закон распределения суммы неограниченно приближается к нормальному.
При доказательстве этой теоремы Ляпуновым использовались так называемые характеристические функции.
Определение. Характеристической функцией случайной величины Х называется функция
эта функция представляет собой математическое ожидание некоторой комплексной случайной величины , являющейся функцией от случайной величины Х. При решении многих задач удобнее пользоваться характеристическими функциями, а не законами распределения.
Зная закон распределения, можно найти характеристическую функцию по формуле (для непрерывных случайных величин):
Как видим, данная формула представляет собой не что иное, как преобразование Фурье для функции плотности распределения. Очевидно, что с помощью обратного преобразования Фурье можно по характеристической функции найти закон распределения.
Введение характеристических функций позволяет упростить операции с числовыми характеристиками случайных величин.
В случае нормального распределения характеристическая функция имеет вид:
Сформулируем некоторые свойства характеристических функций:
1) Если случайные величины Х и Y связаны соотношением
где а – неслучайный множитель, то
2) Характеристическая функция суммы независимых случайных величин равна произведению характеристических функций слагаемых.
Случайные величины Xi, рассмотренные в центральной предельной теореме, могут обладать произвольными распределениями вероятностей.
1.6. Теорема Муавра – Лапласа
Если все эти случайные величины одинаково распределены, дискретны и принимают только два возможных значения 0 или 1, то получается простейший случай центральной предельной теоремы, известный как теорема Муавра – Лапласа.
Теорема. (Теорема Муавра – Лапласа) Если производится п независимых опытов, в каждом из которых событие А появляется с вероятностью р, то для любого интервала (a, b) справедливо соотношение:
где Y – число появлений события А в п опытах, q = 1 – p, Ф(х) – функция Лапласа, - нормированная функция Лапласа.
Теорема Муавра – Лапласа описывает поведение биноминального распределения при больших значениях п.
Данная теорема позволяет существенно упростить вычисление по формуле биноминального распределения.
Расчёт вероятности попадания значения случайной величины в заданный интервал при больших значениях п крайне затруднителен. Гораздо проще воспользоваться формулой:
Теорема Муавра – Лапласа очень широко применяется при решении практических задач.
Заключение по лекции:
В лекции мы рассмотрели закон больших чисел. В ходе подготовки к последующей лекции и практическим занятиям вы должны самостоятельно при углубленном изучении рекомендованной литературы и решения предложенных задач дополнить свои конспекты лекций.
Задание на самостоятельную работу
Изучить:
1. Баврин И.И., Матросов В.Л. Высшая математика: Учебник для студентов высших учебных заведений. – М.: Гуманит. изд. центр ВЛАДОС, 2003 г. - 400 с. стр. 394-397.