Функция распределения непрерывной случайной величины
Функция распределения непрерывной случайной величины для определения вероятности попадания случайной величины на интервал
Текст лекции
Введение в лекцию:
На лекции № 8 мы лишь рассмотрели формы закона распределения для дискретных и непрерывных случайных величин. Если вычислить вероятность появления непрерывной случайной величины не составляет особого труда, то решение основной задачи теории вероятностей для непрерывной случайной величины несёт большие трудности. Поэтому в материалах сегодняшней лекции мы рассмотрим методы определения вероятности попадания непрерывной случайной величины на интервал с помощью функции распределения.
Учебные вопросы лекции:
Зная функцию распределения непрерывной случайной величины, задача определения вероятности её попадания на интервал (а; b) может быть решена следующим образом.
По известной функции распределения вероятность попадания непрерывной случайной величины на интервал равна приращению функции распределения на этом участке (рис. 1).
F(х)
![]() |
Р(b £ Х < а)
![]() | |||
| |||
а b х
Рисунок 1
Во всех рассмотренных выше случаях случайная величина определялась путём задания значений самой величины и вероятностей этих значений.
Однако такой метод применим далеко не всегда. Например, в случае непрерывной случайной величины, её значения могут заполнять некоторый произвольный интервал. Очевидно, что в этом случае задать все значения случайной величины просто нереально.
Даже в случае, когда это сделать можно, зачастую задача решается чрезвычайно сложно. Рассмотренный только что пример даже при относительно простом условии (приборов только четыре) приводит к достаточно неудобным вычислениям, а если в задаче будет несколько сотен приборов?
Поэтому встает задача по возможности отказаться от индивидуального подхода к каждой задаче и найти по возможности наиболее общий способ задания любых типов случайных величин.
Пусть х – действительное число. Вероятность события, состоящего в том, что Х примет значение, меньшее х, т.е. Х < x, обозначим через F(x).
Определение. Функцией распределения называют функцию F(x), определяющую вероятность того, что случайная величина Х в результате испытания примет значение, меньшее х.
Функцию распределения также называют интегральной функцией.
Функция распределения существует как для непрерывных, так и для дискретных случайных величин. Она полностью характеризует случайную величину и является одной из форм закона распределения.
Для дискретной случайной величины функция распределения имеет вид:
Знак неравенства под знаком суммы показывает, что суммирование распространяется на те возможные значения случайной величины, которые меньше аргумента х.
Функция распределения дискретной случайной величины Х разрывна и возрастает скачками при переходе через каждое значение хi.
![]() |
Так для примера, который мы будем рассматривать на следующем практическом занятии, функция распределения будет иметь вид (рис. 2):
Рисунок 2