Определение. Если каждому натуральному числу n поставлено в соответствие число хn, то говорят, что задана последовательность

С IV-V вв. нашей эры буква c , ранее обозначавшая звук [k], стала в некоторых позициях читаться как [ts].

Латинские согласные

Сейчас существуют два способа чтения буквы с - "классическое" (во всех случаях как - к), и "средневековое" (перед е, i , j , у, ае, ое - как русская буква ц; в иных случаях, перед согласными и в конце слова -как русская к). В России чаще употребляется второе чтение.

S - между гласными читается как "з ", в остальных случаях как "с ": rosa - роза, solus (солюс) - один.

L - принято читать мягко, как "ль".

Q , q - употребляется только в сочетании qu , которое читается как "кв ". Иногда так же читается и сочетание cu (i ): aqua (аква) - вода, cuique (квиквэ) - каждому.

Сочетание su иногда также читается как "ев": svadeo (свадэо) - советую, suesco (свэско) - привыкаю.

Ti - перед гласными смягчается в "ци": ratio (рацио) - разум, initium (шшциум) - начало.

Однако в сочетаниях sti , xti , tti , sta , sto этого не происходит: Constituo (конституо) - постановлять, учреждать, bestia (бестиа) -зверь, mixtio (микстио) - смешение, Attica (аттика) - Аттика, consto (консто) - состоять, заключаться

x1, х2, …, хn = {xn}

 

Общий элементпоследовательности является функцией от n.

xn = f(n)

Таким образом последовательность может рассматриваться как функция порядкового номера элемента.

Задать последовательность можно различными способами – главное, чтобы был указан способ получения любого члена последовательности.

 

Пример. {xn} = {(-1)n} или {xn} = -1; 1; -1; 1; …

{xn} = {sinpn/2} или {xn} = 1; 0; 1; 0; …

 

Для последовательностей можно определить следующие операции:

 

1) Умножение последовательности на число m: m{xn} = {mxn}, т.е. mx1, mx2, …

2) Сложение (вычитание) последовательностей: {xn} ± {yn} = {xn ± yn}.

3) Произведение последовательностей: {xn}×{yn} = {xn×yn}.

4) Частное последовательностей: при {yn} ¹ 0.

 

Ограниченные и неограниченные последовательности.

Определение. Последовательность {xn} называется ограниченной, если существует такое число М>0, что для любого n верно неравенство:

 

т.е. все члены последовательности принадлежат промежутку (-М; M).

 

Определение. Последовательность {xn}называется ограниченной сверху, если для любого n существует такое число М, что

 

xn £ M.

 

Определение. Последовательность {xn}называется ограниченной снизу, если для любого n существует такое число М, что

 

xn ³ M

 

Пример. {xn} = n – ограничена снизу {1, 2, 3, … }.

 

 

Определение. Число а называется пределом последовательности {xn}, если для любого положительного e>0 существует такой номер N, что для всех n > N выполняется условие:

Это записывается: lim xn = a.

В этом случае говорят, что последовательность {xn}сходится к а при n®¥.

 

Свойство: Если отбросить какое- либо число членов последовательности, то получаются новые последовательности, при этом если сходится одна из них, то сходится и другая.

 

Пример. Предел последовательности lim .

 

Пример. При n®¥ последовательность 3, имеет пределом число 2.

 

Теорема. Последовательность не может иметь более одного предела.

 

Теорема. Если xn ® a, то .

 

Теорема. Если xn ® a, то последовательность {xn} ограничена.

 

Следует отметить, что обратное утверждение неверно, т.е. из ограниченности последовательности не следует ее сходимость.

 

Например, последовательностьне имеет предела, хотя

 

 

Монотонные последовательности.

 

Определение. 1) Если xn+1 > xn для всех n, то последовательность возрастающая.

2) Если xn+1 ³ xn для всех n, то последовательность неубывающая.

3) Если xn+1 < xn для всех n, то последовательность убывающая.

4)Если xn+1 £ xn для всех n, то последовательность невозрастающая

 

Все эти последовательности называются монотонными. Возрастающие и убывающие последовательности называются строго монотонными.

 

Пример. {xn} = 1/n – убывающая и ограниченная

{xn} = n – возрастающая и неограниченная.

 

Пример. Последовательность {xn}=монотонная возрастающая.

 

Пример. Последовательность {xn} = монотонно убывает.

 

 

Следует отметить, что монотонные последовательности ограничены по крайней мере с одной стороны.

 

Теорема. Монотонная ограниченная последовательность имеет предел.

 

Число е.

 

Рассмотрим последовательность {xn} = .

Число е является основанием натурального логарифма.

Выше представлен график функции y = lnx.

 

Предел функции в точке.

 

y f(x)

 

 

A + e

A

A - e

 

0 a - D a a + D x

 

 

Пусть функция f(x) определена в некоторой окрестности точки х = а (т.е. в самой точке х = а функция может быть и не определена)

 

Определение. Число А называется пределом функции f(x) при х®а, если для любого e>0 существует такое число D>0, что для всех х таких, что

 

0 < ïx - aï < D

верно неравенство ïf(x) - Aï< e.

 

То же определение может быть записано в другом виде:

Если а - D < x < a + D, x ¹ a, то верно неравенство А - e < f(x) < A + e.

 

Запись предела функции в точке:

 

Определение. Если f(x) ® A1 при х ® а только при x < a, то - называется пределом функции f(x) в точке х = а слева, а если f(x) ® A2 при х ® а только при x > a, то называется пределом функции f(x) в точке х = а справа.

 

у

f(x)

 

А2

 

А1

 

0 a x

 

 

Приведенное выше определение относится к случаю, когда функция f(x) не определена в самой точке х = а, но определена в некоторой сколь угодно малой окрестности этой точки.

 

Пределы А1 и А2 называются также односторонними пределами функции f(x) в точке х = а. Также говорят, что А – конечный предел функции f(x).

 

Предел функции при стремлении аргумента к бесконечности.

Определение. Число А называется пределом функции f(x) при х®¥, если для любого числа e>0 существует такое число М>0, что для всех х, ïхï>M выполняется неравенство

При этом предполагается, что функция f(x) определена в окрестности бесконечности.

Записывают:

 

 

Графически можно представить:

 
 


y y

 

 

A A

 

0 0

x x

 

 

y y

 
 

 


A A

 

0 0

x x

 

Аналогично можно определить пределы для любого х>M и

для любого х<M.

 

 

Основные теоремы о пределах.

Теорема 1. , где С = const.

 

Следующие теоремы справедливы при предположении, что функции f(x) и g(x) имеют конечные пределы при х®а.

 

Теорема 2.

Доказательство этой теоремы будет приведено ниже.

 

Теорема 3.

Следствие.

 

Теорема 4. при

 

Теорема 5. Если f(x)>0 вблизи точки х = а и , то А>0.

Аналогично определяется знак предела при f(x) < 0, f(x) ³ 0, f(x) £ 0.

 

Теорема 6. Если g(x) £ f(x) £ u(x) вблизи точки х = а и , то и .

 

Определение. Функция f(x) называется ограниченнойвблизи точки х = а, если существует такое число М>0, что ïf(x)ï<M вблизи точки х = а.

 

Теорема 7. Если функция f(x) имеет конечный предел при х®а, то она ограничена вблизи точки х = а.

 

Бесконечно малые функции.

 

Определение. Функция f(x) называется бесконечно малой при х®а, где а может быть числом или одной из величин ¥, +¥ или -¥, если .

Бесконечно малой функция может быть только если указать к какому числу стремится аргумент х. При различных значениях а функция может быть бесконечно малой или нет.

 

Пример. Функция f(x) = xn является бесконечно малой при х®0 и не является бесконечно малой при х®1, т.к. .

 

Теорема. Для того, чтобы функция f(x) при х®а имела предел, равный А, необходимо и достаточно, чтобы вблизи точки х = а выполнялось условие

f(x) = A + a(x),

где a(х) – бесконечно малая при х ® а (a(х)®0 при х ® а).

 

Свойства бесконечно малых функций:

 

1) Сумма фиксированного числа бесконечно малых функций при х®а тоже бесконечно малая функция при х®а.

2) Произведение фиксированного числа бесконечно малых функций при х®а тоже бесконечно малая функция при х®а.

3) Произведение бесконечно малой функции на функцию, ограниченную вблизи точки х = а является бесконечно малой функцией при х®а.

4) Частное от деления бесконечно малой функции на функцию, предел которой не равен нулю есть величина бесконечно малая.