Фильтр обнаружения сигналов.

. . . . . . . . . . . . .

Оптимальные фильтры сжатия сигналов.

Условие оптимальности. Фильтр сжатия сигнала x(t), по существу, представляет собой фильтр формирования сигнала z(t) с эффективной шириной длительности, меньшей по сравнению с эффективной шириной длительности полезного сигнала s(t) во входном сигнале x(t). Расчет оптимального фильтра сжатия может выполняться непосредственно по выражениям (12.3.3).

В предельном случае сжатия сигнала до импульса Кронекера положим, что z(k)=d(k) при статистической независимости сигнала и шума. Отсюда:

Bsz(m) = d(m) ③ s(k+m) = s(-m).

h(n) ③ (Rs(m-n)+Rq(m-n)) = s(-m). (12.4.1)

H(w) = S*(w) / (|S(w)|2+Wq(w)). (12.4.2)

При некоррелированной помехе с дисперсией s2 система уравнений для определения значений коэффициентов h(n):

ho(R(0)+s2)+ h1R(1)+ h2R(2)+ h3R(3)+ ...+ hMR(M) = s(0), (12.4.3)

hoR(1) + h1R(0)+ h2R(1)+ h3R(2)+ ...+ hMR(M-1) = 0,

hoR(2) + h1R(1)+ h2R(0)+ h3R(1)+ ...+ hMR(M-2) = 0,

hoR(M) + h1R(M-1)+ h2R(M-2)+ ....... + hMR(0) = 0.

При расчете коэффициентов фильтра значение s(0) обычно принимается произвольным, чаще всего равным площади сигнала s(t). Тем самым делается попытка полного сжатия площади сигнала до весовой функции Кронекера, что возможно только для сигналов со спектром в главном диапазоне до частоты Найквиста.

Рис. 12.4.1. Сжатие гладких сигналов с разным уровнем шумов.

Для гладких и монотонных функций со спектром в низкочастотной части главного диапазона сжатие до импульса Кронекера невозможно, и в зависимости от уровня шумов фильтр поднимает насколько возможно высокие частоты сигнала, учитывая значение уровня шумов. При этом нарушаются условия нормировки площади оператора фильтра к 1, о чем можно судить по значению передаточной функции H(w) при w=0, которое становится меньше 1, и при обратном преобразовании H(w) Þ h(m) оператор h(m) требует нормировки к 1. Все эти факторы можно наглядно видеть на рис. 12.4.1.

На рисунке приведены три сигнала с одной и той же базовой функцией, на которую наложены шумы разного уровня. При малом уровне шумов (сигнал х1) фильтр в максимальной степени использует высокие частоты сигнала (|H1| >>1 на этих частотах), сохраняя устойчивость работы фильтра при достаточно удовлетворительном (хотя и больше 1) коэффициенте усиления дисперсии помех при максимально возможном сжатии сигнала. При повышении уровня шумов (сигналы х2 и х3) подъем высоких частот сигнала уменьшается, и сжатие сигнала соответственно также уменьшается, предпочтение отдается максимальному подавлению шумов.

Рис. 12.4.2. Сжатие сигнала с высокочастотным спектром

На рис. 12.4.2. приведен пример сжатия сигнала, близкого к прямоугольному импульсу. Базовая функция сигнала s(k) имеет достаточно высокочастотный спектр мощности Ws(w), и при задании формы выходного сигнала сжатия в виде гауссовой функции z(k) передаточная функция фильтра H(w) обеспечивает достаточно уверенное сжатие сигнала (при уменьшении уровня шумов практически до заданной формы).

В пределе, при Wq=0 фильтр сжатия превращается в обратный фильтр (фильтр деконволюции):

H(w)= S*(w) / |S(w)|2 = 1/S(w), (12.4.4)

На выходе такого фильтра имеем:

Y(w) = H(w)X(w) → 1, при X(w) → S(w).

Реализация фильтра возможна только при условии S(w) > 0 на всех частотах в главном частотном диапазоне. В противном случае, при S(wi) → 0, H(wi) → ∞ и фильтр становится неустойчивым. Для исключения возможности такого явления в фильтр (12.4.4) вводится стабилизатор a:

H(w) = S*(w) / [|S(w)|2+a], (12.4.5)

где |S(w)|2+a > 0 во всем частотном диапазоне.

Фильтры деконволюции могут использоваться не только для повышения разрешающей способности данных, но и для интерпретации геофизических данных, если формирование полезного входного сигнала удовлетворяет принципу суперпозиции данных по зависимости от искомых параметров.

Фильтр используется при решении задач обнаружении сигналов известной формы на существенном уровне шумов, значение которых соизмеримо и может даже превышать значения сигналов. В процессе фильтрации необходимо только зафиксировать наличие сигнала в массиве данных, если он там присутствует (а может и не присутствовать), при этом сохранения формы сигнала не требуется. Сама форма сигнала полагается известной либо по теоретическим данным (путем решения прямых задач геофизики или при активном воздействии на геологическую среду сигналами известной формы с учетом соответствующей реакции среды), либо по результатам предшествующих измерений на моделях или на аналогичных средах. Для уверенного обнаружения сигнала фильтр должен обеспечить максимально возможную амплитуду выходного сигнала над уровнем помех и соответственно выполняется на основе критерия максимума пикового отношения сигнал/помеха.

Частотная характеристика. Для расчета фильтра требуется задать известную форму полезного сигнала s(k) ó S(w) и функцию автокорреляции или спектр мощности помех Rq(m) ó Wq(w). Полный входной сигнал принимается по аддитивной модели: x(t) = s(t)+q(t). На выходе проектируемого фильтра h(n) ó H(w) для составляющих выходного сигнала имеем:

y(t) =H(w) S(w) exp(jwt) dw, (12.5.1)

s2 =|H(w)|2 Wq(w) dw, (12.5.2)

где s - средняя квадратическая амплитуда выходной помехи.

Оптимальным в задаче обнаружения одиночного сигнала конечной длительности является фильтр, обеспечивающий на выходе максимальное отношение пиковой мощности сигнала к мощности шума в момент окончания импульса. Значения (12.5.1, 12.5.2) используются для задания критерия максимума отношения сигнал/шум (12.2.3) для произвольной точки ti:

r = [y(ti)]2/d2. (12.5.3)

Исследование функции (12.5.3) на максимум показывает, что он достигается при частотной характеристике фильтра:

H(w) = exp(-jwti) |S*(w)| / Wq(w), (12.5.4)

Для физически реализуемых фильтров в качестве точки ti целесообразно использовать интервал длительности импульса t, при этом:

H(w) = exp(-jwt) |S*(w)| / Wq(w) = exp(-jjs-jwt) |S(w)|/Wq(w). (12.5.4')

Аргумент js в этом выражении компенсирует фазовые сдвиги составляющих спектра сигнала, а wt обеспечивает их задержку на время длительности сигнала. Таким образом, на концевой части сигнала фильтр выполняет синфазное суммирование всех полезных частотных составляющих входного сигнала с весами, пропорциональными отношению |S(w)|/Wq(w), что обеспечивает накопление амплитуды полезного сигнала на интервале всей длительности входного импульса и формирует максимум сигнала на момент его окончания. Вместе с тем фильтр ослабляет спектральные составляющие шума тем сильнее, чем меньше модуль |S(w)|, и полная мощность шума на выходе фильтра оказывается меньшей, чем на входе.

Для получения линейных уравнений расчета коэффициентов фильтра без потери общности можно принять ti=0, при этом:

H(w) = S*(w)/Wq(w) = |S(w)|exp(jjs(w)) / Wq(w). (12.5.5)

При переходе во временную (координатную) область:

H(w)Wq(w) = S*(w) ó h(n) ③ Rq(n-m) = s(-m). (12.5.6)

Система линейных уравнений для расчета фильтра:

hoRq(0)+ h1Rq(1)+ h2Rq(2)+ h3Rq(3)+ ...+ hMRq(M) = S(-M),

hoRq(1)+ h1Rq(0)+ h2Rq(1)+ h3Rq(2)+ ...+ hMRq(M-1)= S(-M+1),

hoRq(2)+ h1Rq(1)+ h2Rq(0)+ h3Rq(1)+ ...+ hMRq(M-2)= S(-M+2),