Распространение знаний

Изобретения

Огнестрельное оружие, порох и корабли, способные пересекать океаны, позволили европейцам открыть, исследовать и нанести на карту значительную часть мира, а изобретение книгопечатания означало, что любая информация быстро становилась доступной ученым всего континента.

Итак, к XVII веку наука действительно далеко продвинулась в своем развитии. Помимо телескопа, были изобретены такие приборы, как микроскоп, термометр, барометр и воздушный насос.

Научные достижения постоянно множились. Двумя другими знаменитыми английскими экспериментаторами были Уильям Гилберт (1544–1603), заложивший основы изучения электричества и магнетизма, и Роберт Гук (1635–1703), который ввел понятие «клетка» для описания того, что увидел через линзы усовершенствованного им микроскопа. Ирландец Роберт Бойль (1627–1691) изобрел вакуумный насос и сформулировал закон, известный в наши дни под названием закона Бойля – Мариотта, который устанавливает соотношение между объемом и давлением.

В это время интерес к науке проявлялся повсеместно, а научные знания были еще не настолько специализированными, чтобы любой образованный человек не мог провести эксперимент и совершить открытие.

Книгопечатание чрезвычайно увеличило число книг и сделало их несравненно дешевле, чем прежде, доступнее для народа. А вместе с распространением книг быстрее начали распространяться и разные знания, то есть скорее пошло вперед просвещение человечества. Честь изобретения книгопечатания принадлежит Иоганну Гуттенбергу (ок. 1399–1468). Но без тряпичной бумаги книгопечатание не могло бы иметь таких огромных успехов. От арабов европейцы впервые научились делать хлопчатую писчую бумагу, но она была непрочна и неудобна для скорописи. Поэтому к ней начали примешивать льняные ткани и, наконец, стали делать бумагу из тряпок. Эта тряпичная бумага, по своей крепости, дешевизне и удобству для письма к концу средних веков вошла во всеобщее употребление.

Начиная с XVI века, взаимосвязь между обществом, наукой и техникой становилась все более тесной, поскольку прогресс в одной из областей знания подталкивал к развитию других. Новая наука пыталась подтвердить справедливость наблюдений путем экспериментов и перевести результаты на универсальный язык математики. Галилей был первым ученым, осознавшим, что именно такой подход является ключом к пониманию всего сущего, и утверждал, что «книга природы... написана математическими знаками».

Создание научных обществ, таких как Лондонское королевское общество (учреждено в 1662 году) и Парижская Академия наук (1666), и издание научных журналов позволяло быстро распространять сведения о каждом научном открытии, давая возможность исследователям использовать новейшую информацию. Сотрудничество ученых и публикация результатов исследований ускорила развитие научного прогресса. В результате этой «революции» в 16 – 17 веках, наука стала (и с тех пор остается) одним из ярчайших примеров успешного сотрудничества во благо человека. С этого момента научные знания приобрели необратимый характер, а их объем, а также и количество ученых удваивается каждые 10–15 лет.

Тема 5. Развитие электромагнитной теории и электротехники

 

Первые наблюдения явлений, известных под названием электричества и магнетизма, относятся ко времени античности и были произведены народами, живущими в бассейне Средиземного моря, особенно греками. Началось с обнаружения свойства натертого янтаря притягивать легкие предметы. Кроме того, в древнем мире наблюдали явления атмосферных разрядов и анестезирующее действие некоторых видов рыб при соприкосновении их с человеческим телом. Но представлений о том, что в этом проявляются электрические явления, не возникало.

Сам термин «электричество» появился на рубеже XVI и XVII веков, а затем постепенно наполнялся содержанием. Начиная с XVIII века, происходит более быстрое накопление знаний, но только в XIX веке электричество стало служить человеку.

Переломный момент в истории электричества произошел в 1600 г., когда вышел в свет замечательный труд английского естествоиспытателя Уильяма Гильберта «De Magnete», представляющий собой один из первых научных трактатов, написанных на основе экспериментов. До этого считалось, что электрические силы присущи только янтарю и одной из разновидности турмалина – линкуриону, а магнитные только железу. Гильберт экспериментально доказал, что электризация при трении обнаруживается у многих веществ – стекла, смолы, минералов и пр., а Земля является огромным магнитом, хотя и не состоит из одного только железа. Гильберт ввел понятие «vis electrica» («сила янтаря»), т.е. электрической силы. С XVIII века производный термин «electricitas» стал широко применяться. В русской научной литературе в XVIII веке получил распространение термин «электричество».

Мушенбрук обратил внимание на различный характер электризации стекла и янтаря, что способствовало открытию в 1733 году Шарлем Франсуа Дюфе «смоляного» и «стекольного» электричества (положительного и отрицательного, согласно терминологии Бенджамина Франклина). К числу наиболее известных достижений Мушенбрука принадлежит лейденская банка – первый конденсатор, изобретенный им в 1745 году. При этом он создал первый прообраз его внешней обкладки (в первых опытах в ее качестве использовалась рука экспериментатора, державшего банку). Мушенбрук обратил внимание на физиологическое действие разряда, сравнив его с ударом ската (ученому принадлежало первое использование термина «электрическая рыба»), провел опыты для проверки своих предположений. При этом он отрицал электрическую природу молнии, пересмотрев свои взгляды лишь после знаменитых опытов Франклина.

Франклин объяснил принцип действия лейденской банки, установив, что главную роль в ней играет диэлектрик, разделяющий проводящие обкладки; ввел общепринятое теперь обозначение электрически заряженных состояний "+" и "-"; разработал общую "унитарную" теорию электрических явлений, исходившую из предположения о существовании единой электрической субстанции, недостаток или избыток которой обусловливает знак заряда тела. Большая заслуга Франклина – установление тождества атмосферного и получаемого с помощью трения электричества и доказательство электрической природы молнии. Обнаружив, что металлические острия, соединённые с землёй, снимают электрические заряды с заряженных тел даже без соприкосновения с ними, Франклин предложил эффективный метод защиты от грозового разряда – молниеотвод.

Франклину принадлежит также ряд других технических изобретений: лампы для уличных фонарей, экономичная "франклиновская" печь, особый музыкальный инструмент, "электрическое колесо", вращающееся под действием электростатических сил, применение электрической искры для взрыва пороха и др.

Сущность электрических и магнитных явлений и связи между ними тогда не знали. Гильберт считал эти явления совершенно различными, и этот взгляд главенствовал до середины XVIII века, когда, благодаря трудам члена Петербургской АН Франца Ульриха Теодора Эпинуса (1724–1802), было положено начало новым взглядам: наука обогатилась представлениями о сходстве электрических и магнитных явлений. Вплоть до конца XVIII века ученые занимались только изучением статического электричества и его применением в практических целях: для лечебных целей, для взрыва пороха от искр при разряде и для передачи зарядов на расстояние – первой попыткой создания электрического телеграфа.

В течение XVIII века накопился большой опытный материал о статическом электричестве. Было установлено, существование проводников и непроводников электричества, доказано существование двух его родов – положительного (стеклянного) и отрицательного (смоляного). Удалось найти более совершенные методы получения значительных статических зарядов с помощью машин, изобрести способы их накопления при помощи лейденских банок и конденсаторов. Было обнаружено явление электростатической индукции. В конце XVIII века Кулон установил и количественную характеристику взаимодействия зарядов (закон Кулона).

Хотя все эти достижения еще не предвещали широкого применения электричества для практических целей, они имели существенное значение. Были созданы первые теории электричества, усовершенствована методика эксперимента, разработан ряд приборов.

В результате процесса изучения электрического тока, электротехника в последней трети XIX века стала важной самостоятельной отраслью науки и техники и оказала революционизирующее влияние на всю технику в целом, а в связи с этим и на все развитие производительных сил общества.

Разнообразные применения электрической энергии можно разделить на две группы:

– в первой электрическая энергия используется в значительных количествах с целью ее превращения в другие виды энергии: механическую (привод, тяга), световую (освещение), тепловую (термические процессы, отопление), химическую (электролиз) и т.п.

– ко второй группе относятся такие применения электрической энергии, при которых, хотя и происходят ее превращения в другие виды энергии, но они не являются целью. Здесь используются электрические импульсы или малые токи для воздействия на какие-либо индикаторы или приемники (телеграф, телефон, приборы управления или регулирования и т.д.).

В последнее десятилетие XVIII века внимание ученых обратилось к новым электрическим явлениям, обнаруженных Л. Гальвани и развитых Алессандро Вольта. Был найден новый вид электричества, который считали отличным от статического – электрический ток. В 1800 году Вольта, анализируя опыты и выводы Гальвани, приходит к построению первых генераторов электрического тока. Это Вольтов столб и чашечная батарея. Начался первый период электротехники – период изучения гальванического тока. Попытки его применения показали, что электрический ток может дать для практики то, что не способны дать другие области физики.