Влияние различных параметров математической модели на точность и устойчивость результатов решения.
При проверке адекватности модели как существующей, так и проектируемой системы реально может быть использовано лишь ограниченное подмножество всех возможных значений входных параметров (рабочей нагрузки и внешней среды). В связи с этим для обоснования достоверности получаемых результатов моделирования большое значение имеет проверка устойчивости модели
Устойчивость модели- это ее способность сохранять адекватность при исследовании эффективности системы на всем возможном диапазоне рабочей нагрузки, а также при внесении изменений в конфигурацию системы.
Очевидно, что устойчивость является положительным свойством модели.
Необходимо, чтобы производилась проверка на корректность исходных данных
Однако если изменение входных воздействий или параметров модели (в некотором заданном диапазоне) не отражается на значениях выходных параметров, то польза от такой модели невелика. В связи с этим возникает задача оценивания чувствительности модели к изменению параметров рабочей нагрузки и внутренних параметров самой системы. Такую оценку проводят по каждому параметру модели в отдельности.
Основана она на том, что обычно диапазон возможных изменений параметра известен. Данные, полученные при оценке чувствительности модели, могут быть использованы, в частности, при планировании экспериментов: большее внимание должно уделяться тем параметрам, по которым модель является более чувствительной.
Решение вопроса о точности моделирования зависит от требований, предъявляемых к модели, и ее назначения. При этом должна учитываться точность получения экспериментальных результатов или особенности постановки тестовых задач.
Проверка разработанной математической модели выполняется путем сравнения с имеющимися экспериментальными данными о реальном объекте или с результатами других, созданных ранее и хорошо себя зарекомендовавших моделей. В первом случае говорят о проверке путем сравнения с экспериментом, во втором — о сравнении с результатами решения тестовой задачи. Оценка погрешностей производится по известным данным, которые известных из экспериментов или в сравнении с математической моделью более высокого уровня точности.