Дискретизация спектров

Теоремы, доказанные для прямого преобразования Фурье, в такой же мере действительны и для обратного. При дискретизации спектра сигнала с шагом Df динамическое представление сигнала также становится периодическим с периодом Т = 1/Df. Для сохранения возможности точного восстановления сигнала в пределах главного периода (без наложения сигналов соседних периодов) частотный шаг дискретизации должен удовлетворять условию:

Df £ 1/T. (7.11)

Попутно отметим, что для временной формы каузального сигнала главным периодом принимают интервал от 0 до Т, хотя при обработке данных на ЭВМ это не имеет значения и главный период может устанавливаться от -Т/2 до Т/2.

Информационная тождественность динамической и частотной форм дискретного представления сигнала непосредственно следует из теоремы Котельникова-Шеннона.

Основой любых преобразований при обработке данных обычно является финитный (конечный по длительности) сигнал, зарегистрированный на интервале 0-Т и состоящий из определенных частотных составляющих от 0 до fmax. Оптимальная дискретизация аналогового сигнала без потери точности его восстановления, как рассмотрено выше, соответствует двум отсчетам на периоде максимальной частотной составляющей:

Dt = 1/2fmax, Nt = T/Dt. (7.12)

где Nt – общее количество отсчетов на интервале Т задания сигнала. Если сигнал зарегистрирован непосредственно в дискретной форме, то он автоматически ограничен по максимальной частоте, т.е. максимальные частоты в таком сигнале равны fmax £ 1/2Dt.

При переводе дискретного сигнала в частотную форму спектр сигнала непрерывен и периодичен с периодом 1/Dt = 2fN. Для оптимальной дискретизации по частоте без потери точности восстановления непрерывного спектра должны выполняться условия:

Df = 1/T = 1/(DtNt), fN = 1/2Dt, (7.13)

Nf = 2fN/Df = Nt. (7.14)

Спектр сигнала подвергается каким-либо преобразованиям (обработке), как правило, только в главном частотном диапазоне и тем самым превращается в непериодический сигнал, существующий только в интервале 2fN (от -fN до fN). Значения спектра за пределами главного диапазона по умолчанию полагаются равными нулю. При обратном переводе такого сигнала из частотной формы в динамическую сигнал также является непрерывным и периодическим с периодом 1/Df = T, при этом оптимальная дискретизация по координатам без потери точности восстановления непрерывной формы соответствует условиям:

Dt = 1/2fN, T = 1/Df, (7.15)

Nt = T/Dt = Nf. (7.16)

При осуществлении преобразований s(kDt) Û S(nDf), равно как и S(nDf) Û s(kDt), условие Nf = Nt является необходимым и достаточным для полного сохранения информации при преобразованиях сигнала из одной формы представления в другую. Условия (7.12-7.16) задают оптимальность преобразований без потерь информации. Если исходный сигнал дискретизирован оптимально и представлен N отсчетами, то уменьшение количества отсчетов при преобразовании неизбежно приводит к определенным потерям информации.

Что касается увеличения числа отсчетов при преобразовании функций (уменьшение интервалов дискретизации), то оно всегда возможно, т.к. выходной сигнал преобразования финитных сигналов является непрерывной функцией и, в принципе, интервал дискретизации может быть установлен бесконечно малым. Однако увеличение числа отсчетов не увеличивает ни количества информации, заключенной в исходном сигнале, ни точности ее представления. По существу, такая операция полностью эквивалентна интерполяции исходного сигнала рядом Котельникова-Шеннона. Пример такой операции приведен на рис. 7.3.

 

Рис. 7.3

 

Отсчеты s(kDt) и огибающая их кривая на рисунке 7.3 повторяют (в более детальном масштабе) сигнал s1(t) на рис. 7.2, дискретизированный с шагом
Dt = 1. Как уже отмечалось, интервал дискретизации данного сигнала оказался завышенным, и спектр сигнала искажен (рис. 7.3). При выполнении операции s(kDt) Þ S(nDf) количество точек дискретизации спектра S(nDf) было увеличено в 5 раз по отношению к количеству точек сигнала s(kDt), т.е. Nf = 5Nt. При обратном преобразовании S(nDf) Þ z(kDt), при этом шаг дискретизации сигнала при его восстановлении оказался также в 5 раз меньше исходного
(Dt = 0.2). Результат можно видеть на рис. 7.3 (кривая z(kDt)). Абсолютно такой же результат дает и интерполяция сигнала s(kDt) рядом Котельникова-Шеннона с переводом на шаг Dt = 0.2. Искажение аналогового сигнала закладывается при его дискретизации, если шаг дискретизации не удовлетворяет условию (7.8), и при любых дальнейших преобразованиях уже не может быть исправлено, т.к. информация о первоначальной форме аналогового сигнала при некорректной дискретизации утрачивается безвозвратно.