Параметры эффекта Гиббса

Большинство методов анализа и обработки сигналов представляют собой или имеют в своем составе операцию свертки сигналов с функцией оператора свертки. Как сигнал, так и оператор свертки, выполняющий определенную задачу обработки данных и реализующий определенную частотную функцию системы обработки, могут быть бесконечно большими. Практика же обработки на ЭВМ может иметь дело только с ограниченными множествами и данных, и коэффициентов оператора. В общем случае, эти ограниченные множества "вырезаются" из бесконечных множеств, а разложение в ряды Фурье, также ограниченные по размерам, является одной из самых распространенных операций обработки цифровых множеств. С учетом этого рассмотрим явление Гиббса более подробно, т.к. при любых ограничениях рядов Фурье оно всегда может весьма существенно сказаться на качестве и точности обработки сигналов.

Очевидно, что при усечении ряда Фурье (4.1) любой функции до конечного числа членов N мы будем иметь усеченный ряд Фурье:

sN(x) =S(n) exp(jxnDw), (4.7)

при этом происходит усечение спектральной характеристики функции до частоты nDw и сходимость суммы остающихся членов ряда sN(x) к исходной функции s(x) ухудшается в тем большей степени, чем меньше значение N. Особенно ярко это проявляется на крутых перепадах (разрывах, скачках) функций:

- крутизна перепадов "размывается", т.к. она не может быть больше, чем крутизна (в нулевой точке) последней сохраненной гармоники ряда (4.7);

- по обе стороны "размытых" перепадов появляются выбросы и затухающие осцилляции с частотой, равной частоте последнего сохраненного или первого отброшенного члена ряда (4.7).

Рассмотрим явление Гиббса на примере разложения в ряд Фурье функции единичного скачка s(x), которая имеет разрыв величиной 1 в точке х = 0.

Уравнение функции:

s(x) = -0.5 при –T/2 ≤ x < 0; s(x) = 0.5 при 0 £ x ≤ T/2.

Поскольку функция является нечетной, ее ряд Фурье не содержит косинусных членов, и коэффициенты ряда в односторонней тригонометрической форме определяются выражением (с учетом соотношения Dw = 2p/T):

bn = (2/T) s(x) sin(xnDw) dx = (2/T) sin(xnDw) dx.

bn = 2/(n·p), n- нечетное,

bn = 0, n- четное.

 

Рис. 4.9. Значения коэффициентов bn

 

Как видно на рис. 4.9, ряд коэффициентов bn затухает очень медленно. Соответственно, медленно будет затухать и ряд Фурье функции s(x):

s(x) = (2/p)[sin xDw + (1/3)·sin x3Dw + (1/5)·sin x5Dw +....].

s(x) = (2/p)sin[x(2n+1)Dw]/(2n+1). (4.8)

Этот ряд при усечении до M нечетных членов можно записать в следующем виде:

s(x) = (2Dw/p)cos(x(2n+1)Dw) dx = (2Dw/p)[cos(x(2n+1)Dw)] dx.

Сумма косинусного ряда равна sin[2(M+1)xDw]/(2sin xDw). Отсюда:

sM(x) = . (4.9)

Для определения местоположения максимумов и минимумов возникающих осцилляций функции, приравняем к нулю ее первую производную (подынтегральную функцию) выражения (4.9), при этом:

xk = ±kp/(2Dw(M+1)) = ±kT/(4(M+1)) , k = 1,2,...

Соответственно, амплитудные значения первых (максимальных) осцилляций функции приходится на точки xk=1 = ±T/(4(M+1)), вторых (противоположных по полярности) - на точки xk=2 = ±T/(2(M+1)). Период пульсаций равен xk=3-xk=1 ≡ 2xk=1 = ±T/(2(M+1)), т.е. на одном периоде задания сигнала появляется 2(М+1) пульсаций с частотой, обратным периоду и равной 2(M+1)Df – частоте последнего сохраненного в суммировании члена ряда Фурье. Функция пульсаций (при ее выделении) является нечетной относительно скачка. Соответственно, при скачке функции s(x) на точке периода Т значения хk являются значениями Dxk относительно точки скачка. Амплитудные значения функции в точках х1 и х2 (при подстановках х1 и х2 верхним пределом в (4.9)) практически не зависят от количества членов ряда М и равны:

sM(x1) » 0.5+0.09, sM(x2) » 0.5-0.05.

Амплитуда последующих осцилляций постепенно затухает.

Реконструкция скачка при трех значениях ряда приведена на рис. 4.10. Как и положено, функция продолжается периодически за пределами заданного интервала (-Т/2, Т/2), при этом на границах периодов также образуются скачки. Скачки являются центрами возникающих осцилляций. Наложение осцилляций друг на друга в зависимости от расстояния между их центрами может как уменьшать амплитуду пульсаций, так и увеличивать.

 

Рис. 4.10. Реконструкция скачка по ограниченному раду Фурье при М=3

 

Таким образом, для усеченных рядов Фурье предельные значения максимальных выбросов по обе стороны от скачка и следующих за ними обратных выбросов при единичной амплитуде разрыва функции достигают соответственно 9% и 5% значения амплитуды скачка. Кроме того, сам скачок функции из собственно скачка преобразуется в переходную зону, длина которой между точками максимальных выбросов по обе стороны скачка равна T/(2(M+1)), а по уровню исходных значений функции на скачке (в данном случае от -0.5 до 0.5) порядка (2/3)T/(2(M+1)). Это явление типично для всех функций с разрывами.