Лекция №9

Тема: Интегрирование простейшие (элементарные) рациональные дроби и их применение.

К простым рациональным дробям относятся рациональные дроби типов:

- вещественные постоянные

2. - вещественные постоянные,

3.

4.

Интегрирование 1го типа:

 

Интегрирование 2го типа:

 

Интегрирование 3го типа:

проводится в два этапа:

1. В числителе выделяется дифференциал знаменателя:

 

 

2. Выделение полного квадрата в знаменателе второго интеграла.

 

 

 

Интегрирование 4го типа:

 

1. Выделяем в числителе *** знаменателя:

 

Выделяем в знаменателе 2го интеграла формулы квадрата:

 

Рекуррентная формула для вычисления Jm (вычисление происходит путем подстановки в известную форму)

 

 

 

 

Тема: Метод неопределенных коэффициентов.

1. Разложим знаменатель на множители:

 

2. Правильная дробь разлагается в сумму простейших и каждому множителю вида соотв. сумма из n простейших дробей вида:

с неопределенным коэф. A1n

Каждому множителю вида соот. сумма из m простейших дробей вида:

с неопределенным коэф.B1 C1

3. Неизвестный коэф. находится методом неопределенных коэф., основанном на: определении, что 2 многочлена тождественно совпадают, если у них равные коэффициенты при одинаковых степенях.

4. Приравнивая коэф. при одинаковых степенях в левой и правой частях, получим систему линейных уравнений относительно неизвестного уравнения.

 

 

Тема Интегрирование некоторых иррациональных выражений

1) Неопределенный интеграл вида

Подынтегральная функция – рациональная функция двух переменных , где , – иррациональная функция одной переменной ,

Теорема. Неопределенный интеграл всегда может быть сведен к неопределенному интегралу от рациональной функции одной переменной .

Сделаем замену переменной: , то есть Отсюда находим: – рациональная функция переменной .

Найдем: .

Функция – рациональная функция переменной (предполагается, что ),

Таким образом,

.

Подынтегральная функция есть произведение двух рациональных функций одной переменной и является рациональной функцией .

Итак, .

2) Неопределенный интеграл вида

Подынтегральная функция – рациональная функция двух переменных , где , – иррациональная функция одной переменной .

Теорема. Неопределенный интеграл всегда может быть сведен к неопределенному интегралу от рациональной функции одной переменной .

Если трехчлен имеет действительные корни

то и

и интеграл сводится к случаю 1.

Поэтому будем считать, что не имеет действительных корней и . Тогда рационализация интеграла может быть достигнута с помощью подстановки Эйлера: (эту подстановку можно применять и в случае действительных корней при на интервале, где ). Отсюда , то есть – рациональная функция от . Но тогда – также рациональная функция от . Поэтому

Замечание. Если а ( ), то можно сделать замену

Пример. Вычислить

Бином не имеет действительных корней. Поэтому полагаем и

Отсюда

В силу этого