Означення віднімання і ділення цілих невід’ємних чисел в аксіоматичній теорії.

Відношення порядку на множині цілих невід’ємних чисел.

6. Із курсу математики відомо, що для числових множин важливо вміти порівнювати числа. Для цього на множині необхідно задати відношення порядку. Введені в аксіоматичній теорії цілих невід’ємних чисел означення операцій додавання, віднімання, множення та ділення ґрунтуються на відношенні “безпосередньо слідує за”, яке пов’язує не довільні цілі невід’ємні числа, а лише сусідні. Отже, постає проблема визначення на цій множині відношення порядку. Зробимо це за допомогою наступного означення.

Означення: говорять, що ціле невід’ємне число абільше за ціле невід’ємне число в, якщо існує таке натуральне число k, що виконується рівність а=в+k.

Для позначення відношення “більше” використовують символічний запис “а>в”, який читають так: а більше в або в менше а. Ми вже зазначали, що а¢=а+1, а тому а¢>а. Звідси випливає, що відношення “більше” є розширенням відношення “безпосередньо слідує за”. Таким чином, можна твердити, що у множині цілих невід’ємних чисел немає найбільшого числа. Оскільки на множині цілих невід’ємних чисел ми задали відношення “менше” (або “більше”), то множина цих чисел стає упорядкованою. Враховуючи сказане, приймемо наступні означення.

Приєднаємо до множини цілих невід’ємних чисел числа, протилежні до натуральних, тобто –1, -2, -3,...,-n,... . Результатом такого об'єднання стає утворення множини цілих чисел, яку позначають так: Z={0, ±1, ±2, ±3, ... ±n, ...}. Розглянемо властивості цієї множини.

Властивість 1: Множина цілих чисел впорядкована.

Властивість 2: Множина цілих чисел дискретна.

Щоб зрозуміти, яка множина є дискретною, введемо два означення.

Означення: елементи а і b, які належать множині А, називаються сусідніми, якщо не існує такого елемента с, який лежить між елементами а і b таналежить множині А.

Означення: множина А називається дискретною, якщо для кожного її елемента існує сусідній.

Властивість 3: множина цілих чисел немає ні найменшого, ні найбільшого числа (цю властивість можна сформулювати так: множина цілих чисел нескінченна).

Означення: множина називається замкненою відносно деякої алгебраїчної операції, якщо для будь-яких двох елементів цієї множини завжди можна знайти третій елемент, що належить цій множині, та є результатом цієї операції.

Властивість 4: множина цілих чисел замкнена відносно операцій додавання, віднімання та множення.

Сформульовані властивості приймемо без доведення.

 

7. Визначимо операції віднімання і ділення в аксіоматичні теорії цілих невід’ємних чисел та покажемо, яким умовам повинні задовольняти цілі невід’ємні числа, щоб ці операції існували та були єдині.

Означення: відніманням цілих невід’ємних чисел називається бінарна алгебраїчна операція (якщо вона існує!), яка кожній парі цілих невід’ємних чисел (а,в)єZo2 ставить у відповідність ціле невід’ємне число а-в – різницю чисел а і в – таке, що (а-в)+в=а.

Із цього означення яскраво видно, що операція віднімання на множині цілих невід’ємних чисел є оберненою до операції додавання, коли за відомою сумою і одним доданком слід знайти інший, невідомий доданок. Разом з тим, в означенні нічого не говориться про умови існування, єдиність та правила виконання такої операції. Саме тому слід довести відповідні теореми.

Теорема 9 (про існування операції віднімання): операція віднімання на множині цілих невід’ємних чисел існує тоді і тільки тоді, коли а³в.

Теорема 10 (про єдиність різниці):якщо різниця двох цілих невід’ємних чисел існує, то вона єдина.

Означення: діленням цілих невід’ємних чисел називається бінарна алгебраїчна операція (якщо вона існує!), яка кожній парі цілих невід’ємних чисел (а,в)єZo2 ставить у відповідність ціле невід’ємне числоа:в– частку чисел а і в– таке, що (а:в)×в=а.

Із цього означення яскраво видно, що операція ділення на множині цілих невід’ємних чисел є оберненою до операції множення, коли за відомим добутком і одним множником слід знайти інший, невідомий множник. Разом з тим, в означенні нічого не говориться про умови існування, єдиність та правила виконання такої операції. Саме тому слід довести відповідні теореми.