Різні підходи до побудови теорії цілих невід’ємних чисел.

Короткі історичні відомості про виникнення понять натурального числа і нуля.

ПЛАН.

МОДУЛЬ ІІІ. «РІЗНІ ПІДХОДИ ДО ПОБУДОВИ АРИФМЕТИКИ ЦІЛИХ НЕВІДЄМНИХ ЧИСЕЛ».

Змістовний модуль 3.1. «Теоретико-множинний підхід до побудови арифметики цілих невід’ємних чисел.».

1. Короткі історичні відомості про виникнення понять натурального числа і нуля.

2. Різні підходи до побудови теорії цілих невід’ємних чисел.

3. Поняття натурального числа і нуля у теоретико-множинній (кількісній) теорії.

4. Визначення відношень “більше (>)”, “менше (<)”, “дорівнює (=)” на множині цілих невід’ємних чисел. Порівняння натуральних чисел за величиною.

5. Множина цілих невід’ємних чисел та її властивості.

6. Визначення суми на множині цілих невід’ємних чисел, її існування та єдиність. Операція додавання та її основні властивості (закони).

7. Віднімання цілих невід’ємних чисел, зв'язок віднімання з додаванням. Теореми про існування та єдиність різниці.

8. Визначення добутку на множині цілих невід’ємних чисел, його існування та єдиність. Операція множення та її основні властивості (закони).

9. Визначення частки цілого невід’ємного числа на натуральне число через розбиття множини на класи, що попарно не перетинаються. Ділення на множині цілих невід’ємних чисел, зв'язок ділення з множенням. Теореми про існування та єдиність частки.

10. Операція ділення з остачею на множині цілих невід’ємних чисел.

ЛІТЕРАТУРА:[1] – с. 107-124; [2] – с. 127-157; [3] – с. 169-197.

 

1. Питання № 1 вивчається самостійно за таким планом:

1) способи порівняння чисельності множин;

2) відокремлення поняття натурального числа від матеріальної основи;

3) виникнення назв і позначень натуральних чисел;

4) способи лічби;

5) способи лічби та позначення чисел у слов’ян;

6) виникнення поняття дії;

7) позиційні і непозиційні системи числення;

8) виникнення теорії чисел.

 

2. Історія розвитку людства дає підстави для висновку про те, що розвиток математики спричинявся принаймні двома обставинами: по-перше, практичними потребами людини та, по-друге, потребами власне математики. Відповідно до цих потреб в математиці існують різні підходи до побудови теорії числових систем. Із шкільного курсу математики відомо, що існують натуральні, цілі, раціональні та дійсні числа (співвідношення між цими числовими множинами представлено за допомогою кругів Л.Ейлера на діаграмі № 3.1.). У курсі математики І-ІУ класів мають справу із невід’ємними цілими числами, до яких відносять об’єднання множини натуральних чисел (N={1, 2, 3, …, n, …}) і нуля. Цю множину прийнято позначати N0 або Z0. Розглянемо різні підходи до побудови теорії цілих невід’ємних чисел.

У процесі практичної діяльності людині доводилося досить часто виконувати операції визначення кількості елементів скінченної множини, визначати порядок розміщення елементів множини, порівнювати множини за кількістю елементів у них, вимірювати певні величини. Для однозначного виконання, трактування та розуміння цих операцій необхідно було мати відповідні засоби. Створення таких засобів детермінувало появу різних трактувань поняття числа. Історично першими з’явилися натуральні числа, бо людині, в першу чергу, доводилося встановлювати чисельність елементів скінченної множини, потім – задавати порядок розміщення елементів у таких множинах, і, нарешті, - вимірювати величини. Таким чином, джерелами появи натуральних чисел можна вважати:

- необхідність встановлювати чисельність елементів скінченної множини, тобто потреби операції лічби;

- операцію вимірювання величин, тобто потреби у виконанні вимірювання різноманітних величин;

- необхідність задавати порядок розміщення елементів у скінченій множині, тобто операцію встановлення порядку розміщення елементів у множині.