Метод Зейделя

Модификацией метода простых итераций Якоби можно считать метод Зейделя.

В методе Якоби на (k+1)-ой итерации значения x, i = 1, 2, …, n. вычисляются подстановкой в правую часть (3.27) вычисленных на предыдущей итерации значений x. В методе Зейделя при вычислении xиспользуются значения x, x, x, уже найденные на (k+1)-ой итерации, а не x, x, …, x, как в методе Якоби, т.е. (k + 1)-е приближение строится следующим образом:

 
 


x = b12 x + b13 x + … + b1,n-1 x + b1n x + c1

x= b21 x + b23 x + … + b2,n-1 x + b2n x + c2

x= b31 x+ b32 x + … + b3,n-1 x+ b3n x+ c3 (3.36)

x= bn1 x+ bn2 x x + bn3 x x+ … + bn,n-1 x + c.n

 

Формулы (3.36) являются расчетными формулами метода Зейделя.

Введем нижнюю и верхнюю треугольные матрицы:

 

0 0 0 … 0 0 b12 b13 … b1n

b21 0 0 … 0 0 0 b23 … b2n

B1 = b31 b32 0 … 0 и B2 = 0 0 0 … b3n .

bn1 bn2 bn30 0 0 0 … 0

 

Матричная запись расчетных формул (3.36) имеет вид:

xk+1= B1xk+1+ B2xk+ c. (3.37)

Так как B = B1+ B2, точное решение x* исходной системы удовлетворяет равенству:

x*= B1x*+ B2x*+ c. (3.38)

Сходимость метода Зейделя.Достаточным условием сходимости метода Зейделя является выполнение неравенства:

b = max |bij|,< 1, i, j = 1, 2, …, n. (3.39)

Неравенство (3.39) означает, что для сходимости метода Зейделя достаточно, чтобы максимальный по модулю элемент матрицы B был меньше единицы.

Если выполнено условие (3.39), то справедлива следующая апостериорная оценка погрешности:

max|x- x| £ max|x– x| i = 1, 2, …, n, (3.40)

где b – максимальный элемент матрицы B, b2 максимальный элемент матрицы B2.

Правую часть оценки (3.40) легко вычислить после нахождения очередного приближения.

Критерий окончания. Если требуется найти решение с точностью e, то в силу (3.37) итерационный процесс следует закончить как только на (k+1)-ом шаге выполнится неравенство:

max|x– x| < e, i = 1, 2, …, n. (3.41)

Поэтому в качестве критерия окончания итерационного процесса можно использовать неравенство

max|x– x| < e1, i = 1, 2, …, n. (3.42)

где e1 = e.

Если выполняется условие b £ , то можно пользоваться более простым критерием окончания:

max|x– x| < e, i = 1, 2, …, n. (3.43)

Метод Зейделя как правило сходится быстрее, чем метод Якоби. Однако возможны ситуации, когда метод Якоби сходится, а метод Зейделя сходится медленнее или вообще расходится.

Пример 3.6.

Применим метод Зейделя для решения системы уравнений (3.33) из примера 3.5. Первые шаги полностью совпадают с процедурой решения по методу Якоби, а именно: система приводится к виду (3.34), затем в качестве начального приближения выбираются элементы столбца свободных членов (3.35). Проведем теперь итерации методом Зейделя.

При k = 1

x=0.0574x0.1005x0.0431x+ 1.0383 = 0.7512

При вычислении xиспользуем уже полученное значение x:

x= 0.0566 x0.0708x0.1179x+ 1.2953 = 0.9674

При вычислении xиспользуем уже полученные значения xи x:

x= 0.1061 x0.0758 x0.0657x+ 1.4525 = 1.1977

При вычислении xиспользуем уже полученные значения x, x, x:

x= –0.0280 x– 0.0779 x– 0.0405x x+ 1.5489 = 1.4037

Аналогичным образом проведем вычисления при k = 2 и k = 3. Получим:

при k = 2

x= 0.8019, x= 0.9996, x= 1.9996, x= 1.4000.

при k = 3

x= 0.80006, x= 1.00002, x= 1.19999, x= 1.40000.

Известны точные значения переменных:

x1 = 0.8, x2 = 1.0, x3 = 1.2, x4 = 1.4.

Сравнение с примером 3.5 показывает, что метод Зейделя сходится быстрее и дает более точный результат.