Формула Грина

Установим связь между двойным интегралом по некоторой плоской области D и криволинейным интегралом по границе L этой области.

Пусть в плоскости Оху дана ограниченная замкнутым контуром L правильная область D. Кривые, ограничивающие эту область снизу и сверху, заданы уравнениями

y = y1(x) и y = y2(x), y1(x) ≤ y2(x), a ≤ x ≤ b (рис.1).

 

y

P

y=y2(x)

M D N

y=y1(x)

Q

O a b x

Рис. 1.

 

Зададим в области D непрерывные функции P(x, y) и Q(x, y), имеющие непрерывные частные производные, и рассмотрим интеграл

.

Переходя к двукратному интегралу, получим:

(26.5)

Так как у = у2(х) – параметрическое выражение кривой МPN, то

где справа стоит криволинейный интеграл по кривой MPN. Аналогично получаем, что

.

Подставим полученные результаты в формулу (26.5):

(26.6)

так как контур L представляет собой объединение кривых MPN и NQM.

Так же можно получить, что (26.7)

Вычтем из равенства (26.6) равенство (26.7):

При этом обход контура L происходит по часовой стрелке. Изменим направление обхода. Тогда предыдущее равенство примет вид:

(26.8)

Эта формула, задающая связь между двойным интегралом и криволинейным интегралом 2-го рода, называется формулой Грина.

 

Замечание 1. Если в криволинейном интеграле по замкнутому контуру не указано направление обхода, то предполагается, что он производится против часовой стрелки.

 

Замечание 2. Если рассматривать в плоскости Оху векторное поле {P(x,y), Q(x,y)}, то в правой части формулы (26.8) стоит его циркуляция по контуру L.

 

Пример. Вычислим циркуляцию векторного поля {x + sin x, х – eу} по контуру x²+ y²=1.

Применим формулу Грина, учитывая, что :

Область D при этом – круг единичного радиуса с центром в начале координат. Перейдем к полярным координатам:

 

Практическое применение криволинейных интегралов