Ряд Тейлора.
Определение 19.1. Выражение вида
, (19.7)
или
, (19.7*)
где – числа, зависящие от индекса k, называется рядом (числовым рядом).
Определение 19.2. Конечные суммы называются частичными суммами ряда (19.7).
Определение 19.3. Если существует конечный предел
, (19.8)
то говорят, что ряд (19.7) сходится к числу S и называют S суммой ряда:
.
Определение 19.4. Если предел частичных сумм Sn ряда (19.7) не существует или равен
, то ряд (19.7) называется расходящимся рядом.
Если функция имеет производные любого порядка в окрестности точки
, то можно функцию
представить в виде суммы
.
Такое разложение называется рядом Тейлора функции по степеням
. Если
, то это будет ряд Маклорена.
Особый интерес представляет тот случай, когда ряд Тейлора функции по степеням
сходится в некоторой окрестности точки
и при том к самой функции
. Если это имеет место, то
,
, (19.9)
то есть функция есть сумма её ряда Тейлора в некоторой окрестности точки
. В этом случае говорят, что функция
разлагается в ряд Тейлора по степеням
, сходящийся к ней.
♦ Теорема 19.1. Пусть функция на отрезке
имеет производные любого порядка и остаток её формулы Тейлора стремится к нулю при
на этом отрезке:
. (19.10)
Тогда функция разлагается в ряд Тейлора на этом отрезке.
Доказательство. Пусть функция имеет на отрезке
производные любого порядка. Тогда эти производные непрерывны на
, потому что если
имеет производную
на
, то производная
непрерывна на
.
Поэтому для нашей функции имеет смысл формула Тейлора:
,
.
В силу (19.10)
.
То есть в этом случае многочлен Тейлора функции по степеням
стремится при
к самой функции:
,
. (19.11)
А это означает, что ряд Тейлора функции сходится на
и имеет своей суммой
:
,
. ■
♦ Теорема 19.2 (достаточный критерий сходимости остатка формулы Тейлора к нулю). Если функция имеет на отрезке
производные любого порядка, ограниченные одним и тем же числом
,
, то остаток её формулы Тейлора на этом отрезке стремится при
к нулю:
. (19.12)
Доказательство. Воспользуемся формой Лагранжа остаточного члена:
. (19.13)
Так как правая часть (19.13) стремится к нулю при , то имеет место (19.12). ■