Интерполяция и экстраполяция
Аппроксимация
Аппроксимация, или приближение, — замена одних математических объектов другими, в том или ином смысле близкими к исходным. Аппроксимация позволяет исследовать числовые характеристики и качественные свойства объекта, сводя задачу к изучению более простых или более удобных объектов (например, таких, характеристики которых легко вычисляются или свойства которых уже известны). В теории чисел изучаются диофантовы приближения, в частности приближения иррациональных чисел рациональными. В геометрии рассматриваются аппроксимациикривых ломаными. Некоторые разделы математики в сущности целиком посвящены аппроксимации, например теория приближения функций, численные методы анализа.
Аппроксимацией (приближением) функции f(x) называется нахождение такой функции g(x) (аппроксимирующей функции), котораябыла бы близка заданной. Критерии близости функций f(x) и g(x) могут быть различные. В том случае, когда приближение строится на дискретном наборе точек, аппроксимацию называют точечной или дискретной. В том случае, когда аппроксимация проводится на непрерывном множестве точек (отрезке), то аппроксимация называется непрерывной или интегральной. Примером такой аппроксимации может служить разложение функции в ряд Тейлора, т. е. замена некоторой функции степенным многочленом. Например:
• для приближенного вычисления интеграла используется формула прямоугольников или формула трапеций, или более сложная квадратурная формула. Фактически при этом происходит приближение подынтегральной функции ступенчатой функцией или вписанной ломаной;
• для вычисления значений сложных функций часто используется вычисление значения отрезка ряда, аппроксимирующего функцию.
Интерполяция — способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений.
В научных и инженерных расчетах часто приходится оперировать наборами значений, полученных экспериментальным путем или методом случайной выборки. Как правило, на основании этих наборов требуется построить функцию, на которую могли бы с высокой точностью попадать другие получаемые значения. Например, известны некоторые значения функции — физической величины, замеренные через 1 ч. Необходимо найти значения в промежутках через 30 мин.
Интерполяцией называют такую разновидность аппроксимации, при которой кривая построенной функции проходит точно через имеющиеся точки данных.
Существует также близкая к интерполяции задача, которая включается в аппроксимации какой-либо сложной функции другой, более простой функцией. Если некоторая функция слишком сложна для производительных вычислений, можно попытаться вычислить ее значение в нескольких точках, а по ним построить, т. е. интерполировать, более простую функцию. Разумеется, использование упрощенной функции не позволяет получить такие же точные результаты, какие давала бы первоначальная функция, но в некоторых классах задач достигнутый выигрыш в простоте и скорости вычислений может перевесить получаемую погрешность в результатах.
Большая часть классического численного анализа основывается на приближении многочленами, так как с ними легко работать. Однако для многих целей используются и другие классы функций.
Выбрав узловые точки и класс приближающих функций, мы должны ещё выбрать одну определённую функцию из этого класса посредством некоторого критерия — некоторой меры приближения или «согласия». Прежде чем начать вычисления, мы должны решить также, какую точность мы хотим иметь в ответе и какой критерий мы изберём для измерения этой точности.
Всё изложенное можно сформулировать в виде четырёх вопросов:
1. Какие узлы мы будем использовать?
2. Какой класс приближающих функций мы будем использовать?
3. Какой критерий согласия мы применим?
4. Какую точность мы хотим?
Существуют 3 класса или группы функций, широко применяемых в численном анализе. Первая группа включает в себя линейные комбинации функций 1, х, х2, …, хn, что совпадает с классом всех многочленов степени n (или меньше). Второй класс образуют функции cos(x), sin(x). Этот класс имеет отношение к рядам Фурье и интегралу Фурье. Третья группа образуется функциями e-az. Эти функции встречаются в реальных ситуациях. К ним, например, приводят задачи накопления и распада.
Что касается критерия согласия, то классическим критерием согласия является «точное совпадение в узловых точках». Этот критерий имеет преимущество простоты теории и выполнения вычислений, но также неудобство из-за игнорирования шума (погрешности, возникающей при измерении или вычислении значений в узловых точках). Другой относительно хороший критерий — это «наименьшие квадраты». Он означает, что сумма квадратов отклонений в узловых точках должна быть наименьшей возможной или, другими словами, минимизирована. Этот критерий использует ошибочную информацию, чтобы получить некоторое сглаживание шума. Третий критерий связывается с именем Чебышева. Основная идея его состоит в том, чтобы уменьшить максимальное отклонение до минимума. Очевидно, возможны и другие критерии.
Более конкретно ответить на поставленные 4 вопроса можно лишь исходя из условий и цели каждой отдельной задачи.
Интерполяция многочленами
Цель задачи о приближении (интерполяции): данную функцию у(х) требуется приблизительно заменить некоторой функцией j(х), свойства которой нам известны так, чтобы отклонение в заданной области было наименьшим. интерполяционные формулы применяются, прежде всего, при замене графически заданной функции аналитической, а также для интерполяции в таблицах.
Наиболее часто встречающимся видом точечной аппроксимации является интерполяция. Пусть задан дискретный набор точек хi, (i=0, 1, ..., п), называемых узлами интерполяции, причем среди этих точек нет совпадающих, а также значения функции yi в этих точках. Требуется построить функцию g(x), проходящую через все заданные узлы. Таким образом, критерием близости функции является g(xi) = yi. В качестве функции g(x)обычно выбирается полином, который называют интерполяционным полиномом. В том случае, если полином един для всей области интерполяции, говорят, что интерполяция глобальная.
В тех случаях, когда между различными узлами полиномы различны, говорят о кусочной или локальной интерполяции. Найдя интерполяционный полином, можно вычислить значения функции f(x) между узлами (провести интерполяцию в узком смысле слова), а также определить значение функции f{x) даже за пределами заданного интервала (провести экстраполяцию).
Пусть имеется п значений хi,каждому из которых соответствует свое значение уi. Требуется найти такую функцию F, что:
F(xi) =yi, i = 0, 1, ..., п. (1).
При этом:
• хi называют узлами интерполяции;
• пары (хi ,уi) называют точками данных;
• разницу между соседними значениями (хi -хi-1) называют шагом;
• функцию F(x) — интерполирующей функцией или интерполянтом.
Задача интерполирования состоит в том, чтобы по значениям функции в некоторых точках восстановить ее значения в остальных точках отрезка. Функция F называется интерполирующей, точки х0, х1, х2, ..., хn — узлами интерполяции.
Будем искать функцию F в виде многочлена степени п:
F(x) = a0·xn + an-1·xn -1… +an-1·x + an . (2).
Можно найти коэффициенты аi, i= 0, 1,..., п, при этом получим систему из (п + 1) уравнения с
(п +1) неизвестными
(3).
Эта система имеет единственное решение, так как по нашему предположению все хi различны. Решая эту систему относительно неизвестных а0, а1, ..., ап, получим аналитическое выражение многочлена.
Описанный прием можно использовать при решении задач интерполирования, но на практике используют другие более удобные и менее трудоемкие методы.