Теоретическая дисперсия дискретной случайной переменной

Правила расчета математического ожидания

Существуют три правила, которые часто используются. Эти правила практически самоочевидны, и они одинаково применимы для дискретных и непрерывных случайных переменных.

Правило 1. Математическое ожидание суммы нескольких переменных равно сумме их математических ожиданий. Например, если имеются три случайные переменные , и , то

. (A.4)

Правило 2. Если случайная переменная умножается на константу, то ее математическое ожидание умножается на ту же константу. Если – случайная переменная и – константа, то

. (A.5)

Правило 3. Математическое ожидание константы есть она сама. Например, если – константа, то

. (A.6)

Следствие из трех правил:

.

Независимость случайных переменных

Две случайные переменные и называются независимыми, если

(A.7)

для любых функций и . Из независимости следует как важный частный случай, что .

Теоретическая дисперсия является мерой разброса для вероятностного распределения. Она определяется как математическое ожидание квадрата разности между величиной и ее средним, т.е. величины , где – математическое ожидание . Дисперсия обычно обозначается как или , и если ясно, о какой переменной идет речь, то нижний индекс может быть опущен:

. (A.8)

Из можно получить – среднее квадратическое отклонение – столь же распространенную меру разброса для распределения вероятностей; среднее квадратическое отклонение случайной переменной есть квадратный корень из ее дисперсии.

Мы проиллюстрируем расчет дисперсии на примере с одной игральной костью. Поскольку , то в этом случае равно . Мы рассчитаем математическое ожидание величины , используя схему, представленную в табл. A.5. Дополнительный столбец представляет определенный этап расчета . Суммируя последний столбец в табл. I.5, получим значение дисперсии , равное 2,92. Следовательно, стандартное отклонение ( ) равно , то есть 1,71.

Таблица A.5

         
1/6 –2,5 6,25 1,042
1/6 –1,5 2,25 0,375
1/6 –0,5 0,25 0,042
1/6 0,5 0,25 0,042
1/6 1,5 2,25 0,375
1/6 2,5 6,25 1,042
Всего 2,92

Одним из важных приложений правил расчета математического ожидания является формула расчета теоретической дисперсии случайной переменной, которая может быть записана как

. (A.9)

Это выражение иногда оказывается более удобным, чем первоначальное определение. Доказательство предоставляется читателю в качестве упражнения.