Целевая функция 5 страница

где - постоянные затраты, которые не зависят от режима обработки, мин;

Здесь - подготовительно – заключительное время на операцию, мин;

- размер партии обрабатываемых деталей;

- вспомогательное время операции, мин;

- время на обслуживание без учета времени на замену инструмента, мин;

- время на отдых рабочего, мин;

- затраты времени, связанные с заменой затупившегося инструмента и соответствующей поднастройкой технологической системы;

где - время на замену инструмента и соответствующую размерную настройку;

- диаметр и длина обрабатываемого вала;

- коэффициент для расчета скорости резания;

- скорость резания;

- подача;

- глубина резания;

, здесь - показатели степени в формулах для расчета режимов резания.

Анализ целевой функции времени позволяет вскрыть резервы дополнительного повышения производительности и определить оптимальные режимы резания, обеспечивающие минимальные затраты на выполнение операции.

Целевая функция стоимости на примере обработки вала имеет вид:

где

Здесь - расходы на материал;

- расходы в единицу времени соответственно на эксплуатацию оборудования, приспособления, по зарплате с учетом накладных расходов;

- время на замену инструмента и соответствующую размерную настройку;

- стоимость инструмента за период его эксплуатации.

Первый член выражения определяет постоянные затраты на материал, расходы, связанные с подготовительно – заключительным временем и временем обслуживания. Второй член выражения определяет затраты на режущий инструмент и простои при его замене. Третий член выражения определяет расходы, связанные непосредственно с выполнением процесса резания.

Далее оптимальные значения находят известными методами (см., например, методические указания к лабораторным работам по данной дисциплине).

 

Лекция 14

 

Объемное планирование работы технологических станочных систем

 

Эта и все последующие лекции посвящены вопросам математического моделирования и оптимизации технологических станочных систем.

 

Объемное планирование работы механического участка при достижении максимальной загрузки технологического оборудования

 

Постановка задачи. Имеется m – станков (m – групп станков), на которых могут быть изготовлены n – типов деталей. Трудоемкость обработки j - ой детали на i – м станке составляет , час. Известны фонды времени работы каждого станка (группы станков) – Bi. Исходные данные для решения задачи представлены в таблице 14.1.

 

Таблица 14.1. Исходные данные для решения задачи, представленные в общем виде

Требуется определить количество деталей каждого наименования , при обработке которых достигается максимальная загрузка оборудования участка.

Математическая модель для решения задачи запишется:

Ограничения:

(14.1)

 

(14.2)

. . .

(14.3)

 

(14.4)

Управляемые параметры:

.

Целевая функция:

(14.5)

Задача решается методом линейного программирования. При этом следует иметь в виду следующее. Количество ограничений вида (14.1) - (14.3) в математической модели должно строго равняться количеству станков (групп станков) участка. При решении задачи с помощью компьютера количество станков (групп станков), а также типов деталей практически не ограничено и определяется только возможностями компьютера и соответствующей программы. При решении задачи вручную с применением графо-аналитического метода количество типов станков (групп станков) также не ограничено, но их увеличение естественным образом приведет к увеличению времени расчетов. Количество же типов деталей не должно превышать двух, т.к. в противном случае невозможно будет на плоскости выполнить необходимые графические построения.

Пример.Исходные данные для примера приведены в таблице 14.2.

 

Таблица 14.2. Исходные данные для решения задачи

 

Обозначим через количество деталей типа D1, через количество деталей типа D2.

Математическая модель для решения данной задачи запишется следующим образом:

Ограничения(по фонду времени работы оборудования):

(14.6)

 

(14.7)

 

(14.8)

 

(14.9)

 

(14.10)

Целевая функция (суммарное время работы всех групп оборудования):

(14.11)

Требуется найти значения и , удовлетворяющие заданным ограничениям (14.6) – (14.10) и обеспечивающие максимум целевой функции (14.11). Параметры и являются управляемыми параметрами в математической модели.

Решим задачу графо – аналитическим методом (см. лекцию 6). Графическая иллюстрация решения задачи приведена на рис. 14.1.

Рис.14.1. Графическая иллюстрация решения задачи

Вычисления для построения ограничений (14.6) – (14.8):

x1
x2

x1
x2

x1
x2

Направления допустимости ограничений (14.6) – (14.8) – «вниз – влево».

Ограничения (14.9) и (14.10) – это оси координат. Направления их допустимости – «вправо» и «вверх».

Для нахождения точки касания границы ОДР прямой линией, определяющей целевую функцию, построим сначала произвольную прямую для целевой функции, приравняв ее выражение к произвольному числу в пределах масштаба построений, например к 1500:

x1
x2

Проведя прямую линию, параллельную данной, находим точку касания ее границы ОДР – это точка А. Для нахождения ее координат (точки пересечения ограничений 14.7 и 14.8) решаем следующую систему уравнений:

Т.е. окончательно

Максимальное значение целевой функции (максимальная загрузка оборудования участка) при оптимальных значениях искомых параметров составит:

 

Задача о минимальной загрузке оборудования

 

Эта и последующие задачи в данной лекции приводятся на уровне постановки задачи и формирования математической модели для ее решения. Все они решаются методами линейного программирования.

Имеется m станков, на которых могут быть изготовлены n типов деталей. Производительность i - го станка при изготовлении детали j - го типа составляет Cij. Величины плановых заданий Aj на изготовление j - ой детали и ресурс времени Bi работы i - го станка приведены в таблице 14.3.

 

Таблица 14.3 Исходные данные для решения задачи

 

Требуется, учитывая ресурсы времени работы каждого станка распределить задания между станками таким образом, чтобы общее время работы всех станков было минимальным.

Пусть tij - время изготовления j - ой детали i - м станком. Составим ограничения по ресурсу времени для каждого станка:

(14.12)

Условия выполнения плановых заданий имеют вид:

(14.13)

Решение поставленной задачи состоит в минимизации линейной целевой функции (суммарного времени)

(14.14)

при ограничениях (14.12), (14.13) и условии, что все переменные .

 

Задача об оптимальном распределении деталей по станкам

 

Пусть некоторая машина состоит из различных видов деталей, которые мы пронумеруем числами . Имеется типов различных станков, причем количество станков - го типа равно . Детали могут быть изготовлены на станках разного типа. Производительность станка - го типа при изготовлении - ой детали составляет . После изготовления детали поступают на сборку. Требуется закрепить станки за деталями так, чтобы в единицу времени получать максимальное количество машин.

Пусть - количество станков - го типа, на которых можно изготовить - ю деталь. Очевидно, что количество станков - го типа, изготавливающих детали видов, не должно превышать заданное число :

(14.15)

Общее количество деталей - го вида, изготовленное на станках за единицу времени, составляет . В каждой машине имеется ровно одна деталь с номером , . Поэтому, для того чтобы не было изготовлено лишних и не было дефицитных деталей, должны выполняться условия комплектности:

(14.16)

Общее количество комплектов деталей, необходимых для сборки машины, равно общему количеству какой-либо одной детали, имеющей, например, номер 1. Поэтому решение задачи заключается в максимизации линейной функции

(14.17)

при ограничениях (14.15), (14,16) с дополнительным условием, что все переменные .

Найденные оптимальные значения этой задачи не обязательно целые числа. Например, означает, что на двух станках первого типа в течение единицы времени будут изготовлять деталь с номером 1, тогда как третий станок того же типа будет работать лишь половину указанного времени.

 

Задача о производстве продукции при ограниченных запасах сырья

 

Из видов сырья производится различных типов продукции. Стоимость реализации изготовленной продукции - го типа составляет . Запас сырья - го вида на планируемый период равен . Потребность в сырье - го типа составляет . Исходные данные для решения задачи приведены в таблице 14.4.

 

Таблица 14.4 Исходные данные для решения задачи

 

Требуется для каждого типа продукта определить такой объем производства , чтобы обеспечить максимальную стоимость реализации изготовленной продукции при условии, что не будут превышены запасы имеющегося сырья.

Ограничения по запасам сырья имеют вид:

(14.18)

Задача заключается в том, чтобы определить оптимальные значения параметров (переменных) , обращающих в максимум стоимость продукции, т.е. целевую функцию

при ограничениях (14.18) и дополнительных условиях .

 

Лекция 15

 

Основы теории массового обслуживания

 

Теория массового обслуживания составляет один из разделов теории вероятностей. В этой теории рассматриваются вероятностные задачи и математические модели (до этого нами рассматривались детерминированные математические модели). Напомним, что:

Детерминированная математическая модельотражает поведение объекта (системы, процесса) с позиций полной определенности в настоящем и будущем.

Вероятностная математическая модель учитывает влияние случайных факторов на поведение объекта (системы, процесса) и, следовательно, оценивает будущее с позиций вероятности тех или иных событий.

Т.е. здесь как, например, в теории игр задачи рассматриваются в условиях неопределенности.

Рассмотрим сначала некоторые понятия, которые характеризуют «стохастическую неопределенность», когда неопределенные факторы, входящие в задачу, представляют собой случайные величины (или случайные функции), вероятностные характеристики которых либо известны, либо могут быть получены из опыта. Такую неопределенность называют еще «благоприятной», «доброкачественной».

 

Понятие случайного процесса

 

Строго говоря, случайные возмущения присущи любому процессу. Проще привести примеры случайного, чем «неслучайного» процесса. Даже, например, процесс хода часов (вроде бы это строгая выверенная работа – «работает как часы») подвержен случайным изменениям (уход вперед, отставание, остановка). Но до тех пор, пока эти возмущения несущественны, мало влияют на интересующие нас параметры, мы можем ими пренебречь и рассматривать процесс как детерминированный, неслучайный.

Пусть имеется некоторая система S (техническое устройство, группа таких устройств, технологическая система – станок, участок, цех, предприятие, отрасль промышленности и т.д.). В системе S протекает случайный процесс, если она с течением времени меняет свое состояние (переходит из одного состояния в другое), причем, заранее неизвестным случайным образом.

Примеры:1. Система S – технологическая система (участок станков). Станки время от времени выходят из строя и ремонтируются. Процесс, протекающий в этой системе, случаен.

2. Система S – самолет, совершающий рейс на заданной высоте по определенному маршруту. Возмущающие факторы – метеоусловия, ошибки экипажа и т.д., последствия – «болтанка», нарушение графика полетов и т.д.

 

Марковский случайный процесс

 

Случайный процесс, протекающий в системе, называется Марковским, если для любого момента времени t0 вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент t0 и не зависят от того, когда и как система пришла в это состояние.

Пусть в настоящий момент t0 система находится в определенном состоянии S0. Мы знаем характеристики состояния системы в настоящем и все, что было при t < t0 (предысторию процесса). Можем ли мы предугадать (предсказать) будущее, т.е. что будет при t > t0? В точности – нет, но какие-то вероятностные характеристики процесса в будущем найти можно. Например, вероятность того, что через некоторое время система S окажется в состоянии S1 или останется в состоянии S0 и т.д.

Пример. Система S – группа самолетов, участвующих в воздушном бою. Пусть x – количество «красных» самолетов, y – количество «синих» самолетов. К моменту времени t0 количество сохранившихся ( не сбитых) самолетов соответственно – x0, y0. Нас интересует вероятность того, что в момент времени численный перевес будет на стороне «красных». Эта вероятность зависит от того, в каком состоянии находилась система в момент времени t0, а не от того, когда и в какой последовательности погибали сбитые до момента t0 самолеты.

На практике Марковские процессы в чистом виде обычно не встречаются. Но имеются процессы, для которых влиянием «предистории» можно пренебречь. И при изучении таких процессов можно применять Марковские модели (в теории массового обслуживания рассматриваются и не Марковские системы массового обслуживания, но математический аппарат, их описывающий, гораздо сложнее).

В исследовании операций большое значение имеют Марковские случайные процессы с дискретными состояниями и непрерывным временем.

Процесс называется процессом с дискретным состоянием, если его возможные состояния S1, S2, … можно заранее определить, и переход системы из состояния в состояние происходит «скачком», практически мгновенно.

Процесс называется процессом с непрерывным временем, если моменты возможных переходов из состояния в состояние не фиксированы заранее, а неопределенны, случайны и могут произойти в любой момент.

Далее рассматриваются только процессы с дискретным состоянием и непрерывным временем.

Пример. Технологическая система (участок) S состоит из двух станков, каждый из которых в случайный момент времени может выйти из строя (отказать), после чего мгновенно начинается ремонт узла, тоже продолжающийся заранее неизвестное, случайное время. Возможны следующие состояния системы:

S0 - оба станка исправны;

S1 - первый станок ремонтируется, второй исправен;

S2 - второй станок ремонтируется, первый исправен;

S3 - оба станка ремонтируются.

Переходы системы S из состояния в состояние происходят практически мгновенно, в случайные моменты выхода из строя того или иного станка или окончания ремонта.

При анализе случайных процессов с дискретными состояниями удобно пользоваться геометрической схемой – графом состояний. Вершины графа – состояния системы. Дуги графа – возможные переходы из состояния в

Рис.15.1. Граф состояний системы

состояние. Для нашего примера граф состояний приведен на рис.15.1.

Примечание. Переход из состояния S0 в S3 на рисунке не обозначен, т.к. предполагается, что станки выходят из строя независимо друг от друга. Вероятностью одновременного выхода из строя обоих станков мы пренебрегаем.

 

Потоки событий

 

Поток событий – последовательность однородных событий, следующих одно за другим в какие-то случайные моменты времени.

В предыдущем примере – это поток отказов и поток восстановлений. Другие примеры: поток вызовов на телефонной станции, поток покупателей в магазине и т.д.

Поток событий можно наглядно изобразить рядом точек на оси времени O t – рис. 15.2.

Рис.15.2. Изображение потока событий на оси времени

Положение каждой точки случайно, и здесь изображена лишь какая-то одна реализация потока.

Интенсивность потока событий ()– это среднее число событий, приходящееся на единицу времени.

Рассмотрим некоторые свойства (виды) потоков событий.

Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени.

В частности, интенсивность стационарного потока постоянна. Поток событий неизбежно имеет сгущения или разрежения, но они не носят закономерного характера, и среднее число событий, приходящееся на единицу времени, постоянно и от времени не зависит.

Поток событий называется потоком без последствий, если для любых двух непересекающихся участков времени и (см. рис.15.2) число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой. Другими словами, это означает, что события, образующие поток, появляются в те или иные моменты времени независимо друг от другаи вызваны каждое своими собственными причинами.

Поток событий называется ординарным, если события в нем появляются поодиночке, а не группами по нескольку сразу.

Поток событий называется простейшим (или стационарным пуассоновским), если он обладает сразу тремя свойствами: 1) стационарен, 2) ординарен, 3) не имеет последствий.

Простейший поток имеет наиболее простое математическое описание. Он играет среди потоков такую же особую роль, как и закон нормального распределения среди других законов распределения. А именно, при наложении достаточно большого числа независимых, стационарных и ординарных потоков (сравнимых между собой по интенсивности) получается поток, близкий к простейшему.

Для простейшего потока с интенсивностью интервал T между соседними событиями имеет так называемое показательное (экспоненциальное) распределение с плотностью