Доведення.

Згідно із означенням перестановок без повторень Рn=Ann. За формулою Ann=n!/(n-k)!. Отже, Рn= Ann=n!/(n-n)!=n!/0!=n!/1=n! Формула доведена.

Задача: скільки п’ятицифрових чисел можна записати за допомогою цифр 1, 3, 5, 7, 9 якщо жодна із цифр не повторюється.

Розв’язання.

У задачі є п’ятиелементна множина М={1, 3, 5, 7, 9}. Із елементів цієї множини потрібно утворювати п’ятицифрові числа, причому жодна з цифр не повторюється, а оскільки одне п’ятицифрове число від іншого, утвореного з тих самих цифр буде відрізнятися навіть при переставлянні двох цифр, то нам слід утворювати перестановки без повторень із п’яти елементів. Отже у формулі: Рn=n!, n=5. Р5=5!=1•2•3•4•5=120. За допомогою п’яти цифр запишемо 120 чисел.

4. Комбiнацiї та їх властивості.

4.Розглянемо множину М={a1, a2, a3,...,an}, де n(М)=n, i з’ясуємо, скільки k-елементних підмножин, де k≤n можна вибрати в цій множині М. Оскільки не вказано, що ці підмножини впорядковані, то одна підмножина повинна відрізнятися від другої принаймні одним елементом, а порядок розміщення елементів не має значення. В комбінаториці такі підмножини називаються комбінаціями із даних n елементів по k елементів, а їх число позначають символом Сnk. Цей символічний запис читають так: число комбінацій із n елементів по k елементів.

Означення: будь-яка k елементна підмножина АÌМ даної n елементної множини М називається комбінацією із n елементів по k.

Із наведеного означення випливає, що комбінація – це множина, а тому одна комбінація від іншої відрізняється або принаймні одним елементом, або складом елементів. Одне розміщення із елементів множини М вiдрiзняється від іншого розміщення із елементів цієї ж множини або принаймні одним елементом, або складом елементів, або порядком їх розташування. Одна перестановка відрізнялася від іншої перестановки елементів цієї ж множини М порядком розташування елементів. Виведемо формулу для обчислення числа комбінацій.

Теорема: число комбінацій із даних n елементів по k елементів (k≤n) дорівнює дробові, чисельник якого дорівнює добутку k послідовних натуральних чисел, із яких найбільшим є n, а знаменник дорівнює добутку перших k натуральних чисел.

Символічно формула для обчислення числа комбінацій із даних n елементів по k елементів запишеться так: Сnk=(n•(n-1)•(n-2)•...•(n-k+1))/(1•2•3•...•k)=n!/((n-k)!k!).