Назначение экспертных систем
Экспертные системы
Логическая модель
Продукционная модель
Продукционная модель, или модель, основанная на правилах, позволяет представить знания в виде предложений типа: Если (условие), то (действие).
если А1, А2, …, Аn, то В
А1, А2, …, Аn – факты
Под условием понимается некоторое предложение-образец, по которому осуществляется поиск в базе знаний, а под действием - действия, выполняемые при успешном исходе поиска (они могут быть промежуточными, выступающими далее как условия, и терминальными или целевыми, завершающими работу системы).
При использовании продукционной модели база знаний состоит из набора правил, Программа, управляющая перебором правил, называется машиной вывода. Чаще всего вывод бывает прямой (от данных к поиску цели) или обратный (от цели для ее подтверждения - к данным). Данные - это исходные факты, на основании которых запускается машина вывода - программа, перебирающая правила из базы.
Продукционная модель чаще всего применяется в промышленных экспертных системах. Она привлекает разработчиков своей наглядностью, высокой модульностью, легкостью внесения дополнений и изменений и простотой механизма логического вывода.
Преимущества продукционных систем:
- подавляющая часть человеческих знаний может быть представлена в виде продукций;
- системы продукции являются модульными;
- при необходимости системы продукций могут реализовывать сложные алгоритмы;
- прозрачность системы (легко проследить логику и объяснить полученный результат).
Продукционные модели имеют два недостатка: при большом числе продукций (> 1000) проверка непротиворечивости становится сложнее; неоднозначность выбора из фронта готовой продукции.
Язык, использующий продукционную модель – ПРОЛОГ.
В основе их описания лежит формальная система с четырьмя элементами:
М=<Т, Р, А, В > , где
Т – множество базовых элементов различной природы с соответствующими процедурами;
Р – множество синтаксических правил. С их помощью из элементов Т образуют синтаксически правильные совокупности. Процедура П(Р) определяет, является ли эта совокупность правильной;
А- подмножество множества Р, называемых аксиомами. Процедура П(А) дает ответ на вопрос о принадлежности к множеству А;
В – множество правил вывода. Применяя их к элементам А, можно получить новые синтаксически правильные совокупности, к которым можно применить эти правила снова. Процедура П(В) определяет для каждой синтаксически правильной совокупности, является ли она выводимой.
Экспертные системы (ЭС) - это сложные программные комплексы, аккумулирующие знания специалистов в конкретных предметных областях и тиражирующие этот эмпирический опыт для консультаций менее квалифицированных пользователей.
Цель исследования экспертных систем - разработка программ, которые при решении задач из некоторой предметной области, получают результаты, не уступающие по качеству и эффективности результатам, полученным экспертами.
Экспертные системы предназначены для решения неформализованных, практически значимых задач. Использование экспертной системы следует только тогда, когда их разработка является возможной и целесообразной.
Факты, свидетельствующие о необходимости разработки и внедрения экспертных систем:
- нехватка специалистов, расходующих значительное время для оказания помощи другим;
- потребность в многочисленном коллективе специалистов, поскольку ни один из них не обладает достаточным знанием;
- низкая производительность, поскольку задача требует полного анализа сложного набора условий, а обычный специалист не в состоянии просмотреть (за отведенное время) все эти условия;
- наличие конкурентов, имеющих преимущество в том, что они лучше справляются с поставленной задачей.
По функциональному назначению экспертные системы можно разделить на следующие типы:
1. Мощные экспертные системы, рассчитанные на узкий круг пользователей (системы управления сложным технологическим оборудованием, экспертные системы ПВО). Такие системы обычно работают в реальном масштабе времени и являются очень дорогими.
2. Экспертные системы, рассчитанные на широкий круг пользователей. К ним можно отнести системы медицинской диагностики, сложные обучающие системы. База знаний этих систем стоит недешево, так как содержит уникальные знания, полученные от специалистов экспертов. Сбором знаний и формированием базы знаний занимается специалист по сбору знаний – инженер-когнитолог.
3. Экспертные системы с небольшим числом правил и сравнительно недорогих. Эти системы рассчитаны на массового потребителя (системы, облегчающие поиск неисправностей в аппаратуре). Применение таких систем позволяет обойтись без высококвалифицированного персонала, уменьшить время поиска и устранения неисправностей. Базу знаний такой системы можно дополнять и изменять, не прибегая к помощи разработчиков системы. В них обычно используются знания из различных справочных пособий и технической документации.
4. Простые экспертные системы индивидуального использования. Часто изготавливаются самостоятельно. Применяются в ситуациях, чтобы облегчить повседневную работу. Пользователь, организовав правила в некоторую базу знаний, создает на ее основе свою экспертную систему. Такие системы находят применение в юриспруденции, коммерческой деятельности, ремонте несложной аппаратуре.
Использование экспертных систем и нейронных сетей приносит значительный экономический эффект. Так, например: - American Express сократила свои потери на 27 млн. долларов в год благодаря экспертной системе, определяющей целесообразность выдачи или отказа в кредите той или иной фирме; - DEC ежегодно экономит 70 млн. долларов в год благодаря системе XCON/XSEL, которая по заказу покупателя составляет конфигурацию вычислительной системы VAX. Ее использование сократило число ошибок от 30% до 1%; - Sira сократила затраты на строительство трубопровода в Австралии на 40 млн. долларов за счет управляющей трубопроводом экспертной системы.