Дискретные случайные величины

Дискретная случайная величина и закон ее распределения

Наряду с понятием случайного события в теории вероятности используется и более удобное понятие случайной величины.

Определение. Случайной величиной называется величина, принимающая в результате опыта одно из своих возможных значений, причем заранее неизвестно, какое именно.

Будем обозначать случайные величины заглавными буквами латинского алфавита (Х, Y, Z,…), а их возможные значения – соответствующими малыми буквами (xi, yi,…).

Примеры: число очков, выпавших при броске игральной кости; число появлений герба при 10 бросках монеты; число выстрелов до первого попадания в цель; расстояние от центра мишени до пробоины при попадании.

Можно заметить, что множество возможных значений для перечисленных случайных величин имеет разный вид: для первых двух величин оно конечно (соответственно 6 и 11 значений), для третьей величины множество значений бесконечно и представляет собой множество натуральных чисел, а для четвертой – все точки отрезка, длина которого равна радиусу мишени. Таким образом, для первых трех величин получаем множество значений из отдельных (дискретных), изолированных друг от друга значений, а для четвертой оно представляет собой непрерывную область. По этому показателю случайные величины подразделяются на две группы: дискретные и непрерывные.

Определение. Случайная величина называется дискретной, если она принимает отдельные, изолированные возможные значения с определенными вероятностями. Число возможных значений дискретной случайной величины может быть конечным или бесконечным.

Определение. Случайная величина называется непрерывной, если множество ее возможных значений целиком заполняет некоторый конечный или бесконечный промежуток. Число возможных значений непрерывной случайной величины бесконечно.

 

Для задания дискретной случайной величины нужно знать ее возможные значения и вероятности, с которыми принимаются эти значения. Соответствие между ними называется законом распределенияслучайной величины. Он может иметь вид таблицы, формулы или графика.

Таблица, в которой перечислены возможные значения дискретной случайной величины и соответствующие им вероятности, называется рядом распределения:

xi x1 x2 xn возможные значения
pi p1 p2 pn вероятность возможных значений

Заметим, что событие, заключающееся в том, что случайная величина примет одно из своих возможных значений, является достоверным, поэтому или

Задача. Монету бросают 5 раз. Случайная величина X – количество выпадения герба. Составить ряд распределения случайной величины Х.

Решение. Очевидно, что Х может принимать 5 значений: 0, 1, 2, 3, 4, 5, то есть X = 0, 1, 2, 3, 4, 5. По условию , . Вычислим вероятность каждого значения по формуле Бернулли: .

Герб не выпадет ни разу (k = 0): .

Или .

Герб выпадет один раз (k = 1):
.

Герб выпадет два раза (k = 2):

.

Герб выпадет три раза (k = 3):

.

Герб выпадет четыре раза (k = 4):

.

Герб выпадет пять раз (k = 5):

.

Следовательно, ряд распределения имеет вид:

 
биномиальные вероятности

При этом сумма вероятностей равна единице:

Графически закон распределения дискретной случайной величины можно представить в виде многоугольника распределения – ломаной, соединяющей точки плоскости с координатами (xi, pi). То есть по оси абсцисс откладываются возможные значения случайной величины, а по оси ординат – вероятности этих значений. Для наглядности полученные точки соединяются отрезками прямых. Многоугольник распределения, так же как и ряд распределения, полностью характеризует случайную величину и является одной из форм закона распределения.