Виды измерений.
Классификация видов измерений представлена на рис.3. Измерения различают по способу получения информации, по характеру изменений измеряемой величины в процессе измерений, по количеству измерений, по способу выражения результатов измерения.
По способу получения значений физической величины измерения могут быть прямыми, косвенными, совокупными и совместными, каждое из которых проводится абсолютным и относительным методами (см. п. 3.2.).
Рис. 3. Классификация видов измерений
Прямое измерение – измерение, при котором искомое значение величины находят непосредственно из опытных данных. Примерами прямых измерений являются определения длины с помощью линейных мер или температуры термометром. Прямые измерения составляют основу более сложных косвенных измерений.
Косвенное измерение –измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, полученными прямыми измерениями, например, тригонометрические методы измерения углов, при которых острый угол прямого треугольника определяют по измеренным длинам катетов и гипотенузы или измерение среднего диаметра резьбы методом трех проволочек или, мощности электрической цепи по измеренным вольтметром напряжению и амперметром силе тока, используя известную зависимость. Косвенные измерения в ряде случаев позволяют получить более точные результаты, чем прямые измерения. Например, погрешности прямых измерений углов угломерами на порядок выше погрешностей косвенных измерений углов с помощью синусных линеек.
Совместными называют производимые одновременно измерения двух или нескольких разноименных величин. Целью этих измерений является нахождение функциональной связи между величинами.
Пример 1. Построение градуировочной характеристики y = f(x) измерительного преобразователя, когда одновременно измеряются наборы значений:
X1, X2, X3, …, Xi, …,Xn
ß ß ß ß ß
Y1, Y2, Y3, …, Yi, …,Yn
Пример 2. Определение температурного коэффициента сопротивления путем одновременного измерения сопротивления R и температуры t, а затем определение зависимости a(t) = DR/Dt:
R1, R2, …, Ri, …, Rn
Ý Ý Ý Ý
t1, t2, …, ti, …, tn
Совокупные измерения осуществляются путем одновременного измерения нескольких одноименных величин, при которых искомое значение находят решением системы уравнений, получаемых в результате прямых измерений различных сочетаний этих величин.
Пример: значение массы отдельных гирь набора определяют по известному значению массы одной из гирь и по результатам измерений (сравнений) масс различных сочетаний гирь.
Имеются гири массами m1, m2, m3.
Масса первой гири определится следующим образом:
Масса второй гири определится как разность массы первой и второй гирь М1,2 и измеренной массы первой гири :
Масса третьей гири определится как разность массы первой, второй и третьей гирь (M1,2,3) и измеренных масс первой и второй гирь ():
Часто именно этим путем добиваются повышения точности результатов измерения.
Совокупные измерения отличаются от совместных только тем, что при совокупных измерениях одновременно измеряют несколько одноименных величин, а при совместных – разноименных.
Совокупные и совместные измерения часто применяют при измерении различных параметров и характеристик в области электротехники.
По характеру изменения измеряемой величины бывают статические, динамические и статистические измерения.
Статические – измерения неизменных во времени ФВ например, измерение длины детали при нормальной температуре.
Динамические – измерения изменяющихся во времени ФВ, например измерение расстояния до уровня земли со снижающегося самолета, или напряжение в сети переменного тока.
Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т.д.
По точности существуют измерения с максимально возможной точностью, контрольно-поверочные и технические.
Измерения с максимально возможной точностью – это эталонные измерения, связанные с точностью воспроизведения единиц физической величины, измерения физических констант. Эти измерения определяются существующим уровнем техники.
Контрольно–поверочные – измерения, погрешность которых не должна превышать некоторое заданное значение. К ним относятся измерения, выполняемые лабораториями государственного надзора за внедрением и соблюдением стандартов и состоянием измерительной техники, измерения заводскими измерительными лабораториями и другие, осуществляемые при помощи средств и методик, гарантирующих погрешность, не превышающую заранее заданного значения.
Технические измерения – измерения, в которых погрешность результата определяется характеристиками средств измерений (СИ). Это наиболее массовый вид измерений, проводится с помощью рабочих СИ, погрешность которых заранее известна и считается достаточной для выполнения данной практической задачи.
Измерения по способу выражения результатов измерений могут быть также абсолютными и относительными.
Абсолютное измерение – измерение, основанное на прямых измерениях одной или нескольких основных величин, а также на использовании значений физических констант. При линейных и угловых абсолютных измерениях, как правило, находят одну физическую величину, например, диаметр вала штангенциркулем. В некоторых случаях значения измеряемой величины определяют непосредственным отсчетом по шкале прибора, отградуированного в единицах измерения.
Относительное измерение – измерение отношения величины к одноименной величине, играющей роль единицы. При относительном методе измерений производится оценка значения отклонения измеряемой величины относительно размера установочной меры или образца. Примером является измерение на оптиметре или миниметре.
По числу измерений различают однократные и многократные измерения.
Однократные измерения – это одно измерение одной величины, т.е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями, поэтому следует проводить не менее трех однократных измерений и находить конечный результат как среднее арифметическое значение.
Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Обычно минимальное число измерений в данном случае больше трех. Преимущество многократных измерений – в значительном снижении влияний случайных факторов на погрешность измерения.
Приведенные виды измерений включают различные методы, т.е. способы решения измерительной задачи с теоретическим обоснованием по принятой методике.