Испытания изоляции повышенным напряжением

РЕЗЮМЕ

Измерение - это один из основных методов контроля изоляции электрооборудования высокого напряжения. При измерениях контролируют абсолютную величину tg δ, изменения tg δ по сравнению с предыдущими измерениями, а в некоторых случаях снимают зависимость tg δ от напряжения.

Для измерения используют высоковольтный измерительный мост по схеме Шеринга.

Контроль частичных разрядов позволяет судить о темпах электрического старения изоляции. В электрическом методе контроля ЧР регистрируют скачок напряжения на изоляции и величину кажущегося заряда.

Контрольные вопросы

1. Какие свойства изоляции характеризует угол диэлектрических потерь?

2. Как проводят контроль изоляции измерением угла диэлектрических потерь?

3. Что означает название <четырехплечий уравновешенный мост переменного тока по схеме Шеринга>?

5. Объясните принцип работы моста Шеринга и возможности измерения угла диэлектрических потерь. Запишите уравнения равновесия моста.

6. Зачем и каким образом контролируют частичные разряды в изоляции?

 

 

ИЗОЛЯЦИИ ОТДЕЛЬНЫХ ВИДОВ ОБОРУДОВАНИЯ КОНТРОЛЬ ПОВЫШЕННЫМ НАПРЯЖЕНИЕМ. ИСПЫТАНИЯ

Испытания изоляции повышенным напряжением позволяют выявить локальные дефекты, не обнаруживаемые иными методами; кроме того, такой метод испытаний является прямым способом контроля способности изоляции выдерживать воздействия перенапряжений и дает определенную уверенность в качестве изоляции. К изоляции прикладывается испытательное напряжение, превышающее рабочее напряжение, и нормальная изоляция выдерживает испытания, а дефектная пробивается.

При профилактических или послеремонтных испытаниях проверяется способность изоляции проработать без отказа до следующих очередных испытаний. Контроль изоляции повышенным напряжением дает только косвенную оценку длительной электрической прочности изоляции, и основная его задача - проверка отсутствия грубых сосредоточенных дефектов.

Испытательные напряжения для нового оборудования на заводах-изготовителях определяется ГОСТ 1516.2-97, а при профилактических испытаниях величины испытательных напряжений принимаются на 10-15% ниже заводских норм. Этим снижением учитывается старение изоляции и ослабляется опасность накопления дефектов, возникающих при испытаниях.

Контроль изоляции повышенным напряжением в условиях эксплуатации проводится для некоторых видов оборудования (вращающиеся машины, силовые кабели) с номинальным напряжением не выше 35 кВ, поскольку при более высоких напряжениях испытательные установки слишком громоздки.

При испытаниях повышенным напряжением используются три основных вида испытательных напряжений: повышенное напряжение промышленной частоты, выпрямленное постоянное напряжение и импульсное испытательное напряжение (стандартные грозовые импульсы).

Основным видом испытательного напряжения является напряжение промышленной частоты. Время приложения такого напряжения - 1 мин, и изоляция считается выдержавшей испытания, если за это время не наблюдалось пробоя или частичных повреждений изоляции. В некоторых случаях проводят испытания напряжением повышенной частоты (обычно 100 или 250 Гц).

При большой емкости испытуемой изоляции (при испытании кабелей, конденсаторов) требуется применение испытательной аппаратуры большой мощности, поэтому такие объекты чаще всего испытываются повышенным постоянным напряжением. Как правило, при постоянном напряжении диэлектрические потери в изоляции, приводящие к ее нагреву, на несколько порядков ниже, чем при переменном напряжении такого же эффективного значения; кроме того, и интенсивность частичных разрядов намного ниже. При таких испытаниях нагрузка на изоляцию существенно меньше, чем при испытаниях переменным напряжением, поэтому для пробоя дефектной изоляции требуется более высокое постоянное напряжение, чем испытательное переменное напряжение.

При испытаниях постоянным напряжением дополнительно контролируется ток утечки через изоляцию. Время приложения постоянного испытательного напряжения составляет от 5 до 15 мин. Изоляция считается выдержавшей испытания, если она не пробилась, а значение тока утечки к концу испытаний не изменилось или снизилось.

Недостаток постоянного испытательного напряжения состоит в том, что это напряжение распределяется по толще изоляции в соответствии с сопротивлениями слоев, а не в соответствии с емкостями слоев, как при рабочем напряжении или при перенапряжении. По этой причине отношения испытательных напряжений к рабочим напряжениям отдельных слоев изоляции получаются существенно разными.

Третьим видом испытательного напряжения являются стандартные грозовые импульсы напряжения с фронтом 1.2 мкс и длительностью до полуспада 50 мкс. Испытания импульсным напряжением производят потому, что изоляция в процессе эксплуатации подвергается воздействию грозовых перенапряжений со схожими характеристиками.

Воздействие грозовых импульсов на изоляцию отличается от воздействия напряжения частотой 50 Гц из-за гораздо большей скорости изменения напряжения, приводящей к другому распределению напряжения по сложной изоляции типа изоляции трансформаторов; кроме того, сам процесс пробоя при малых временах отличается от процесса пробоя на частоте 50 Гц, что описывается вольт-секундными характеристиками.

По этим причинам испытаний напряжением промышленной частоты в ряде случаев оказывается недостаточно.

Воздействие грозовых перенапряжений на изоляцию часто сопровождается срабатыванием защитных разрядников, срезающих волну перенапряжения через несколько микросекунд после ее начала, и поэтому при испытаниях используют и импульсы, срезанные через 2-3 мкс после начала импульса (срезанные стандартные грозовые импульсы).

Амплитуда импульса выбирается исходя из возможностей оборудования, защищающего изоляцию от перенапряжений, с некоторыми запасами, и исходя из возможности накопления скрытых дефектов при многократном воздействии импульсных напряжений. Конкретные величины испытательных импульсов определяются по ГОСТ 1516.1-76.

Испытания внутренней изоляции проводят трехударным методом. На объект подается по три импульса положительной и отрицательной полярности, сначала полные, а затем срезанные. Интервал времени между импульсами - не менее 1 мин. Изоляция считается выдержавшей испытания, если во время испытания не произошло ее пробоев и не обнаружено повреждений. Методика обнаружения повреждений довольно сложна и обычно проводится осциллографическими методами.

Внешняя изоляция оборудования испытывается 15-ударным методом, когда к объекту с интервалом не менее 1 мин. прикладывается по 15 импульсов обеих полярностей, как полных, так и срезанных. Изоляция считается выдержавшей испытания, если в каждой серии из 15 импульсов было не более двух полных разрядов (перекрытий).

7.2. Испытания изоляции кабелей, трансформаторов и высоковольтных вводов

Все виды испытаний можно разделить на три основные группы, различающиеся по назначению и, соответственно, по объему и нормам:

- испытания новых изделий на заводе-изготовителе;

- испытания после прокладки или монтажа нового оборудования, испытания после капитального ремонта;

- периодические профилактические испытания.

Требования по испытаниям изоляции кабелей, трансформаторов и высоковольтных вводов излагаются раздельно для этих трех групп испытаний.

 

1. Кабели

2.

Испытательные напряжения для кабелей устанавливаются в соответствии с ожидаемым уровнем внутренних и грозовых перенапряжений.

На заводах-изготовителях маслонаполненные кабели и кабели с маловязкой пропиткой испытывают повышенным напряжением промышленной частоты (около 2,5 Uном). Кабели с вязкой пропиткой и газовые кабели для предотвращения повреждения изоляции испытывают выпрямленным напряжением порядка (3,5..4) Uном,причем Uном - линейное при рабочих напряжениях 35 кВ и менее и фазной при рабочих напряжениях 110 кВ и более.

После прокладки кабеля, после капитального ремонта и во время профилактических испытаний изоляцию кабелей испытывают повышенным выпрямленным напряжением. Время испытаний для кабелей напряжением 3..35 кВ составляет 10 мин для кабеля после прокладки и 5 мин после капитального ремонта и во время профилактических испытаний.

Для кабелей напряжением 110 кВ время приложения испытательного напряжения - по 15 мин на фазу. Периодичность профилактических испытаний составляет от двух раз в год до 1 раза в три года для разных кабелей.

При испытаниях контролируется ток утечки, значения которого лежат в пределах от 150 до 800 мкА/км для нормальной изоляции. До и после испытаний измеряется сопротивление изоляции.