Уровень организации Жгутиконосцев. Типы Апикомплексы, Инфузории
Лекция 7 и 9
Это большая группа паразитических простейших, насчитывающая около 4800 видов. Среди них много опасных паразитов человека и животных. К апикомплекс относятся исключительно паразитические простейшие, в большинстве случаев образующие особую фазу развития – спору, которая служит для расселения паразита во внешней среде при переходе от одного хозяина к другому.
Ранее апикомплекс объединяли с другими группами паразитических простейших, образующих споры: миксоспоридиями (Myxozoa), микроспоридиями (Microspora) и асцетоспоридиями (Ascetospora), которые теперь выделены в самостоятельные типы. Выяснилось, что споры всех указанных групп простейших имеют принципиальные различия в строении. Это пример конвергентного развития паразитических простейших. Но они существенно отличаются между собой по особенностям размножения и жизненного цикла и ряду морфологических особенностей.
Апикомплексы отличаются от свободноживущих простейших отсутствием органелл движения на протяжении большей части жизненного цикла. Только на фазе гамет у апикомплекс появляются жгутики.
По сравнению с паразитическими спорообразующими простейшими апикомплексы отличаются особым типом жизненного цикла, спецификой строения спор и особых ранних фаз – зоитов, осуществляющих внедрение паразита в клетку хозяина.
Множественное бесполое размножение паразитов на фазе агамонтов (шизогония) приводит к образованию мерозоитов – молодых фаз развития, поражающих новые клетки хозяина. Мерозоиты представляют особое поколение половых особей паразитов – гамонтов, размножающихся половым путем. В результате деления гамонтов формируются гаметы (гамогония), которые сливаются (копуляция) с образованием зиготы. Копуляция обычно гетерогамная или оогамная. Жгутик имеется только у микрогамет. В дальнейшем зигота претерпевает дополнительное множественное бесполое размножение с образованием спорозоитов (спорогония). При этом происходит зиготическая редукция хромосом.
Шизогония обеспечивает увеличение численности паразита внутри хозяина; гамогония и последующая спорогония способствуют увеличению числа паразитов на расселительной фазе развития (ооцисты со спорами). Ооцисты и споры покрыты плотными оболочками, защищающими клетки споровиков (спорозоиты) от внешних воздействий.
У некоторых споровиков наблюдается смена хозяев в жизненном цикле.
При помощи электронной микроскопии удалось выяснить, что молодые фазы развития апикомплекс – зоиты (мерозоиты, спорозоиты), выполняющие функцию проникновения в клетки хозяина, имеют сложное и специфическое для типа строение. Подобные фазы развития не имеют аналогов у других типов простейших. Зоиты обладают особым апикальным комплексом органелл на переднем конце клетки. Отсюда название типа – апикомплекс (Apicomplexa).
Зоит представляет узкую клетку с крупным ядром, покрытую трехмембранной пелликулой. Наружная мембрана непрерывная, а две внутренние прерываются на заостренном переднем конце клетки и в области микропоры. Под мембранами располагается слой продольных микротрубочек, образующих опорный остов клетки. На переднем, заднем концах клетки и в области микропоры этот слой микротрубочек не замкнут. Специфичен апикальный комплекс органелл проникновения. На переднем конце зоита располагается упругая спираль из фибрилл – коноид и два узких мешковидных образования – роптрии. В момент проникновения зоита в клетку хозяина коноид оказывает механическое воздействие на стенку клетки, а из роптрий изливается содержимое с растворяющим действием. Вокруг роптрий располагаются извивающиеся тяжи – микронемы, функция которых еще не выяснена. Предполагается, что в них, как и в роптриях, вырабатываются вещества, способствующие проникновению зоита в клетку.
Итак, для апикомплекс характерно: отсутствие органелл движения, сложный жизненный цикл с чередованием агамогонии (шизогонии), гамогонии и спорогонии, наличие фаз проникновения в хозяина – зоитов и расселительных фаз – ооцист со спорами и спорозоитами. У отдельных споровиков имеются отклонения в сторону усложнения или упрощения жизненного цикла.
Классификация.Тип Апикомплекс (Apicomplexa) в настоящее время подразделяют на два класса: класс Перкинсеи (Реrkinsea) со слабо выраженным апикальным комплексом и отсутствием полового процесса и класс Споровики (Sporozoea) – с совершенным апикальным комплексом и наличием полового процесса. Мы остановимся на изучении лишь основного центрального класса этого типа – споровиков, к которым относится множество опасных паразитов человека и животных.
Подтип Споровики (Sporozoea)
Подклассласс Споровики (Sporozoea) включает классы: Грегарины, класс Кокцидии.
Класс Грегарины (Gregarinida). Грегарины – паразиты беспозвоночных животных. Известно более 500 видов грегарин. Среди них встречаются крупные виды размером до 16мм и мелкие внутриклеточные паразиты (10-15 мкм).
В жизненном цикле грегарин своеобразен процесс полового размножения, при котором два гамонта соединяются в сизигий, а затем покрываются общей оболочкой, образуя цисту. Бесполое размножение – шизогония может отсутствовать. К подклассу грегарин относится несколько подотрядов, из которых мы познакомимся лишь с одним, наиболее многочисленным – собственно грегаринами (Eugregarinina).
Хозяевами грегарин в основном являются насекомые, а также черви, реже водные моллюски, иглокожие.
Большинство грегарин – внутрикишечные паразиты беспозвоночных животных, меньшее число видов паразитируют в полости тела или в гонадах. Кишечные формы грегарин более сложны по строению. Так, у грегарины Corycella armata из кишечника жука-вертячки (Gyrinus natator) тело состоит из трех отделов: эпимерита, протомерита и дейтомерита, а у Gregarina cuneata из кишечника жука мучного хруща (Tenebrio molitor) – из двух отделов: прото- и дейтомерита. Эпимерит служит для прикрепления к стенке кишки и нередко снабжен крючьями. Прото- и дейтомерит разделены между собой слоем прозрачной эктоплазмы. В дейтомерите расположено ядро. Эндоплазма грегарин перегружена зернами парагликогена – запасного энергетического материала. Грегарины – эндопаразиты и характеризуются анаэробным, т. е. бескислородным, дыханием, при котором парагликоген расщепляется на более простые вещества с выделением энергии, необходимой для обменных процессов. Тело грегарин, обитающих в гонадах и других внутренних органах, не подразделяется на отделы и имеет червеобразную или сферическую форму. Пелликула грегарин плотная, что определяет их относительно постоянную форму тела. Под пелликулой у некоторых грегарин обнаружены кольцевые и продольные мионемы – сократительные волоконца. Их сокращение обеспечивает способность к медленному движению в плотной жидкости. Движению грегарин может также способствовать ундуляция пелликулы. Питаются грегарины сапрофитно, впитывая органические вещества всей поверхностью клетки.
Перед размножением грегарины соединяются попарно в цепочку (сизигий). В дальнейшем они округляются и покрываются общей оболочкой – цистой. Ядро каждого партнера претерпевает многократное деление. Вокруг ядер обособляется цитоплазма и образуются гаметы. Гаметы партнеров могут быть одинаковыми или разными по размеру, т. е. наблюдается изо- или анизогамия. Микрогамета со жгутиком. Часть цитоплазмы от грегарин остается в виде остаточного тела, которое в дальнейшем расходуется как питательный материал для развивающихся зигот. После копуляции гамет партнеров образуются зиготы, которые покрываются плотной оболочкой и формируются ооцисты. Цисты с ооцистами выходят из кишечника наружу. Их дальнейшее развитие происходит во внешней кислородной среде. Внутри ооцисты ядро зиготы несколько раз делится и затем образуются узкие клетки – спорозоиты. Этот процесс размножения ооцисты получил название спорогонии. В процессе спорогонии происходит редукционное деление. После образования спорозоитов ооцисты становятся инвазийными, т. е. способными к заражению других особей жуков-чернотелок. Жуки вместе с пищей заглатывают ооцисты грегарины и заражаются паразитами. Под действием пищеварительных соков жука оболочка ооцисты растворяется и спорозоиты выходят в полость кишечника. Они внедряются в клетки кишечника и некоторое время развиваются внутриклеточно. При дальнейшем росте они разрывают клетку кишечника и вырастают в крупную грегарину – внутриполостного паразита с трехчленностью строения.
Таким образом, рассмотренный нами жизненный цикл грегарины характеризуется тем, что в теле хозяина происходит только половое размножение (гамогония), а в кислородной среде происходит спорогония – с образованием спорозоитов. Инвазия паразита – кишечная. Хозяин заражается грегариной при поедании цист с ооцистами и спорозоитами. У грегарин, как и у всех споровиков, в жизненном цикле доминирует фаза гаплонта. Диплонтом является лишь зигота. Ее первое же деление – мейоз, и потому образующиеся молодые фазы споровиков – спорозоиты уже гаплоидны. Таким образом, грегарины – гаплонты с зиготической редукцией хромосом.
Класс Кокцидии (Coccidia).Кокцидии – внутриклеточные паразиты, в основном позвоночных и редко беспозвоночных животных. Всего известно более 400 видов этого подкласса. Клетка кокцидии округлая, недифференцированная на отделы, как у грегарин. Это в основном очень мелкие формы, размеры которых достигают всего нескольких микрометров. Отряд включает несколько подотрядов: подотряд Эймериевые (Eimeriina), подотряд Кровяные споровики (Haemosporina), подотряд Пироплазмы (Piroplasmina).
Подотряд Эймериевые (Eimeriina). Эймериевые паразитируют только у позвоночных животных, преимущественно у млекопитающих и птиц. Заболевания, вызываемые кокцидиями, называются кокцидиозами. Кокцидиозам подвержены главным образом молодые животные. От кокцидиоза наиболее часто страдают кролики, овцы, телята, куры. Кокцидии паразитируют в клетках стенок кишечника и вызывают кровавый понос, изнуряющий организм хозяина.
Рассмотрим жизненный цикл эймериевых кокцидий на примере Eimeria magna – возбудителя кокцидиоза у кроликов. Кролики заражаются кокцидиозом, проглотив вместе с пищей ооцисты Eimeria magna. В кишечнике из ооцист выходят спорозоиты, внедряющиеся в клетки стенки кишки. Питающаяся фаза кокцидии называется трофозоитом. Ядро трофозоита начинает многократно делиться и формируется многоядерная форма – шизонт (агамонт), приступающий к бесполому размножению, шизогонии (агамогонии). В результате шизогонии образуются десятки мелких узких клеток – мерозоитов. Пораженная клетка хозяина разрушается, и из нее мерозоиты выходят в полость кишечника. Они поражают здоровые клетки, и цикл шизогонии повторяется. У Eimeria magna наблюдается пять генераций мерозоитов. Последняя генерация мерозоитов преобразуется в клетках кишечника в гамонтов. Одни гамонты (микрогамонты) образуют путем деления множество гамет со жгутиками (микрогамет). Другие – макрогамонты – не делятся, и каждый из них преобразуется в одну макрогамету, соответствующую яйцеклетке. Микрогаметы выходят в полость кишечника, проникают к макрогамете. После копуляции гамет образуется зигота, покрывающаяся оболочкой – ооциста. Ооцисты выносятся из кишечника наружу. В кислородной среде в ооцистах происходит процесс спорогонии. Вначале образуются четыре клетки – споробласты, покрывающиеся оболочкой, и из них формируются споры. В каждой споре споробласт образует два спорозоита. После завершения спорогонии споры становятся инвазийными, т. е. способными к заражению животных.
Таким образом, в жизненном цикле кокцидий – Eimeria magna наблюдается пять поколений шизонтов (агамонтов), одно поколение гамонтов и несколько поколений в результате деления зиготы (спорогония). После завершения всего жизненного цикла эймерии, на который уходит 175-208 ч, организм кролика освобождается от паразита. При борьбе с кокцидиозом необходимо принимать меры по предупреждению повторной инвазии. Кокцидиозами заражаются многие домашние животные. Лечение больных животных, их изоляция от здоровых, соблюдение санитарных норм содержания помещений для животных, хороший уход обеспечивают успешную борьбу с кокцидиозами.
Среди эймериевых кокцидий опасность для человека представляет токсоплазма (Toxoplasma gondii). Заболевание, вызываемое этим паразитом, называется токсоплазмозом, который широко распространен по всему миру.
Жизненный цикл токсоплазмы похож на таковой у эймерии, но усложнен сменой хозяев и появлением дополнительных форм размножения. Основным хозяином токсоплазмы являются кошки, в кишечнике которых паразиты размножаются путем шизогонии, а затем половым путем (гамогония) с образованием ооцист. В дальнейшем ооцисты развиваются во внешней кислородной среде, и в результате спорогонии в них формируется по две споры с четырьмя спорозоитами. Промежуточным хозяином токсоплазмы могут быть любые виды птиц и млекопитающих, в том числе и человек. Заражение промежуточных хозяев происходит путем заглатывания цист токсоплазмы с загрязненной пищей или водой. Особенно опасны для заражения человека токсоплазмозом контакты с кошками. Основной хозяин – кошка заражается, поедая некоторых промежуточных хозяев. Наиболее обычным промежуточным хозяином для Toxoplasma являются мыши.
В кишечнике промежуточного хозяина, к которым относится и человек, оболочки ооцист и спор растворяются и из них выходят спорозоиты, внедряющиеся в ткани и попадающие в кровяные сосуды. Паразиты могут локализоваться в любых органах, в том числе мышцах, печени, мозге, глазах. В местах локализации паразиты размножаются путем эндодиогении. Это особый способ бесполого размножения, когда дочерние клетки образуются внутри материнской и лишь позднее обособляются. В результате эндодиогении образуется скопление паразитов, выделяющих вокруг себя уплотненную оболочку. Это цисты токсоплазмы, внутри которых сосредоточены цистозоиты серповидной формы.
Токсоплазма может через плаценту передаваться плоду млекопитающих и человека, что вызывает обычно гибель потомства (трансплацентарная инвазия).
Токсоплазмозы у человека могут протекать как в легкой форме и даже быть незамеченными, так и в тяжелой – с летальным исходом. Отмечено, что у людей, зараженных СПИДом, часто активизируется токсоплазмоз, нередко приводящий человека к гибели.
В борьбе с токсоплазмозом проводится обследование людей, проводится лечение больных, и осуществляются профилактические мероприятия. Соблюдение санитарных норм, гигиена питания, осторожность по отношению к бродячим кошкам предохраняют человека от заражения токсоплазмозом.
Кровяные споровики – специализированные внутриклеточные паразиты крови млекопитающих, птиц и рептилий. Эти паразиты поражают эритроциты крови. Некоторые виды рода Plasmodium паразитируют у человека, вызывая опасную болезнь малярию. Только в конце XIX в. французским врачом Лавераном был обнаружен ее возбудитель – малярийный плазмодий в крови человека, а англичанином Россом обнаружены цисты со спорозоитами из желудка малярийного комара.
Полностью жизненный цикл малярийного плазмодия описан итальянским зоологом Грасси. Приоритет в разработке противоэпидемических мероприятий по борьбе с малярией принадлежит отечественным ученым: Е.И. Марциновскому, Л.М. Исаеву, Е.Н. Павловскому, В.Н. Беклемишеву, Н.И. Латышеву.
Жизненный цикл малярийного плазмодия (Plasmodium vivax) характеризуется сменой хозяев и чередованием поколений с половым и бесполым размножением. Перенос паразита осуществляется малярийными комарами рода Anopheles, которые являются окончательными хозяевами плазмодия.
Человек – промежуточный хозяин малярийного плазмодия. Заражение происходит при укусе комара, в слюне которого содержатся спорозоиты. Вначале спорозоиты внедряются в паренхимные клетки печени и размножаются путем шизогонии. Так происходит накопление паразита в крови, после чего мерозоиты внедряются в эритроциты. В процессе развития плазмодий проходит фазу трофозоита, а затем многоядерного шизонта. Пораженные эритроциты разрушаются, и мерозоиты выходят в плазму крови и внедряются в другие эритроциты. Продолжительность одного цикла шизогонии видоспецифична. Так, у P. vivax и P. falciparum цикл шизогонии длится 48 ч, у P. malariae – 72 ч. Завершение шизогонии и выход мерозоитов из эритроцитов сопровождается у больного повышением температуры и лихорадкой. Это связано с тем, что из разрушенных эритроцитов в кровь поступают продукты диссимиляции паразита (меланины и др.), вызывающие интоксикацию. После нескольких циклов шизогонии болезненные явления прекращаются, а паразиты развиваются в покоящуюся фазу – гамонтов. Человек становится носителем малярийного паразита.
У комара, напившегося крови больного малярией, продолжается развитие плазмодия (гамонтов). В кишечнике комара происходит гамогония. Из микрогамонта образуются узкие мужские гаметы (4-8), а из макрогамонта формируется одна крупная макрогамета (яйцеклетка). После копуляции гамет образуется зигота – червеобразная оокинета, которая внедряется в стенку кишки. На внешней поверхности кишечника оокинета преобразуется в цисту, покрытую тонкой оболочкой. В цисте происходит спорогония паразита с образованием множества спорозоидов (до 500). После разрыва стенки цисты спорозоиды по руслу гемолимфы комара попадают в слюнные железы, где происходит их накопление. При укусе зараженным малярийным комаром в кровь человека попадают споросоиды. У кровяных споровиков в отличие от кокцидий споры не образуются в связи с тем, что паразит распространяется с помощью переносчика (трансмиссивно).
Тип Инфузории (Ciliophora)
Инфузории характеризуются наличием двигательных органелл – ресничек, ядерным дуализмом и особой формой полового процесса – конъюгацией. Всего известно 7500 видов. Большинство инфузорий – свободноживущие морские и пресноводные простейшие. Реже среди них встречаются симбионты и паразиты различных животных.
Инфузории – высокоорганизованные простейшие с наиболее сложной системой органелл. Клетка инфузорий покрыта пелликулой, обеспечивающей постоянство формы тела. Пелликула состоит из плазматической мембраны уплотненного периферического слоя цитоплазмы, в котором располагаются в мозаичном порядке особые мешочки – альвеолы. Под пелликулой располагается эктоплазма, в которую погружены многие другие органеллы. Прежде всего, это кинетосомы – базальные тельца ресничек. От базальных телец отходят три корневые структуры: кинетодесма и два пучка микротрубочек. Они обеспечивают синхронность веслообразных движений ресничек. Совокупность пелликулы и эктоплазмы со всеми структурами образует опорный комплекс – кортекс клетки инфузории. При помощи электронной микроскопии удалось получить трехмерные реконструкции кортекса инфузорий. Структуры кортекса видоспецифичны и используются в систематике.
Реснички инфузорий имеют сходное строение со жгутиками. В центре реснички имеются две микротрубочки (фибриллы) и девять двойных групп микротрубочек по периферии: в кинетосоме центральные фибриллы исчезают, а периферические становятся тройными. Ресничный аппарат у инфузорий разнообразен. Реснички могут склеиваться в пучки – цирры, в пластинки – мембранеллы или мембраны. Особо сложный ресничный аппарат около рта. В зависимости от образа жизни инфузорий их форма тела и адаптации ресничного аппарата сильно варьируют. Многие плавающие инфузории имеют обтекаемую форму тела и равномерное распределение ресничек (инфузория-туфелька – Paramecium). Сидящие и прикрепляющиеся инфузории нередко имеют форму трубы, колокольчика. На расширенном конце тела около рта обычно располагаются длинные реснички или мембранеллы (сувойка – Vorticella, трубач – Stentor). Ползающие инфузории уплощены и снабжены особыми «ножками» – циррами (стилонихия – Stylonichia).
В эктоплазме инфузорий могут находиться сократительные волоконца – мионемы или защитные органеллы – трихоцисты, которые при раздражении «выстреливают» и превращаются в упругую нить. Выстреливание множества трихоцист способно поразить врага из микромира, оказывая парализующее действие.
У многих инфузорий имеется сложная система органелл пищеварения. Рот нередко расположен во впадине тела – воронке (перистом), окруженной длинными ресничками, или мембранеллами. При помощи ресничек пища загоняется в рот (цитостом). Нередко рот ведет в длинную глотку (цитофаринкс), погруженную в эндоплазму. Пищевые комочки, попавшие в эндоплазму, тотчас же окружаются мелкими пузырьками – везикулами с ферментами, что способствует образованию пищеварительных вакуолей. В начале пищеварения в вакуолях образуется кислая среда, а на последующих фазах – щелочная, что аналогично процессам пищеварения у высших животных. Непереваренные частицы выбрасываются из клетки в определенном месте – порошице (цитопрокт). Некоторые хищные инфузории обладают ротовым «хоботком», прокалывающим покровы одноклеточной жертвы (Didinium).
У пресноводных инфузорий имеются сократительные вакуоли – органеллы осморегуляции и выделения. Иногда сократительные вакуоли образуют сложную систему. Так, у инфузории-туфельки две сократительные вакуоли с 5-7 приводящими каналами каждая. Вначале избыток жидкости собирается в лучеобразные каналы, а из них выпрыскивается в центральную вакуоль, представляющую собой резервуар, из которого затем выталкивается наружу.
В эндоплазме инфузорий расположен ядерный аппарат, им свойствен ядерный дуализм. Крупные ядра – макронуклеусы регулируют клеточный метаболизм, а мелкие ядра – микронуклеусы участвуют в половом процессе. В простейшем случае, как у инфузории-туфельки, имеется один бобовидный макронуклеус и маленькое ядро-микронуклеус. А, например, у трубача (Stentor) несколько макро- и микронуклеусов. Макронуклеусы богаты ДНК и обладают высокой плоидностью, в отличие от диплоидного микронуклеуса. В макронуклеусах происходит синтез РНК. ДНК макронуклеуса способна и к репликации. В микронуклеусах же происходит лишь репликация ДНК перед делением, а синтез РНК не осуществляется.
Размножение. Инфузории размножаются бесполым путем – делением клетки надвое в поперечном направлении, причем ядро делится митотически. Половой процесс – конъюгация не сопровождается размножением, т. е. увеличением числа особей. Конъюгация – особая уникальная форма полового процесса, свойственная только инфузориям. При конъюгации инфузории попарно соединяются и обмениваются в результате миграции ядрами. Перед конъюгацией в каждой особи макронуклеус распадается, а микронуклеус мейотически делится, образуя четыре гаплоидных ядра, из которых три рассасываются, а оставшееся ядро митотически делится еще на два. Одно из этих ядер – стационарное – остается в клетке, а другое – мигрирующее – переходит в другую особь. После обмена мигрирующими ядрами происходит слияние стационарного ядра с «чужим» мигрирующим ядром с образованием диплоидного ядра – синкариона. Затем особи расходятся. Из синкариона в каждой клетке формируется макронуклеус и микронуклеус. В результате конъюгации образуется ядро двойственной природы с измененным генотипом, что обеспечивает большую пластичность организма. В некоторых случаях происходит ядерная реорганизация без конъюгации. В этом случае в одной особи образуются стационарное и миграционное ядра, которые потом сливаются. А затем из этого ядра образуется макро- и микронуклеус. Такой процесс называется автогамией. При этом ядро не получает двойственной наследственности, однако при мейозе обычно всегда происходят геномные мутации, что приводит к возникновению измененного генотипа.
Образование макро- и микронуклеуса из синкариона происходит следующим образом. Синкарион митотически делится 1-2 или 3 раза, к часть ядер преобразуется в макро-, другая – в микронуклеусы. В макронуклеусах идет повторная репликация молекул ДНК и происходит повышение плоидности, при этом масса ядер возрастает. Многоядерная инфузория делится с распределением ядер и дополнительным делением микронуклеусов.
Классификация инфузорий.Внастоящее время существует несколько систем этого многочисленного типа простейших. Обычно при подразделении типа на классы используют особенности ротового аппарата, но эту точку зрения разделяют не все протозоологи. Значительно большей популярностью пользуется система инфузорий, базирующаяся на структуре ресничного аппарата всего тела, в том числе и околоротового. Воспользуемся этой традиционной системой инфузорий. Инфузории делятся на два класса: класс Ресничные инфузории (Ciliata) и класс Сосущие инфузории (Suctoria). Представители ресничных инфузорий обладают ресничками на протяжении всех фаз развития, а сосущие – лишены ресничек на большей части жизненного цикла, и только на ранних фазах развития дочерняя клетка – «бродяжка» снабжена ресничками.