Однополостный гиперболоид
Геликоиды как поверхности резьбы
Задать образующую в виде замкнутого прямоугольника, сторона которого должна быть менее полвины шага гелисы (иначе будет самопересечение). Построить геликоид – это виток прямоугольной резьбы. Показать рабочие поверхности резьбы – прямые открытые геликоиды.
Построить равносторонний треугольник как образующую линию. Сторона также не должна превышать полушага гелисы. Получить виток треугольной метрической резьбы.
Образован:
вариант 1: вращением прямой линии вокруг оси, если образующая и ось – скрещивающиеся прямые.
вариант 2: вращением гиперболы вокруг действительной оси.
Построение.
Вариант 1:
- Построить окружность основания.
- Построить вертикальную ось.
- Скопировать основание в верхнюю точку оси.
- Построить образующую из произвольной точки нижнего основания в точку верхнего. Точки указывать привязкой касательно к горловине.
- Построить массив вращения из 10…15 образующих вокруг оси.
- Команда Loft (По сечениям), указать образующие по порядку их расположения, в диалоговом окне указать замыкание поверхности – поверхность построена.
Вариант 2 как результат вращения гиперболы.
- Построить конус из двух чаш. Угол образующей с осью приблизительно 45 градусов.
- Построить гиперболу как сечение, параллельное оси конуса.
- Построить треугольное сечение конуса, проходящее через его ось.
- Конус удалить (заморозить).
- Переместить треугольное сечение за вершину пересечения в вершину гиперболы, совместив их в одну плоскость – получены асимптоты гиперболы.
- Создать контур вращения гиперболы. Вращать контур командой Revolve (Вращать) - получено тело с поверхностью однополостного гиперболоида.
Сечения однополостного гиперболоида.
Показать сечение по гиперболе, эллипсу. Сечение плоскостью, проходящей через какую-либо асимптоту гиперболы перпендикулярно плоскости симметрии гиперболоида – две параллельные прямые.
Построить горловинную окружность. Из произвольной точки основания (привязка Ближайшая) построить две касательные к горловине (привязка Касательная).
Некоторые пересечения гиперболоида с квадриками.
Сформировать конус вращения из полученного треугольника.
Пересечь его с гиперболоидом – получен эллипс и две пересекающиеся прямые.
Построить цилиндр выдавливанием эллипса- сечения по одной из асимптот. Пересечь гиперболоид с таким цилиндром. Показать распадение линии пересечения на эллипс и две параллельные прямые.