Алгоритм принятия решения о выборе критерия оценки изменений
8. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ
Коэффициент корреляции — двумерная описательная статистика, количественная мера взаимосвязи (совместной изменчивости) двух переменных.
История разработки и применения коэффициентов корреляции для исследования взаимосвязей фактически началась одновременно с возникновением измерительного подхода к исследованию индивидуальных различий — в 1870—1880 гг. Пионером в измерении способностей человека, как и автором самого термина «коэффициент корреляции», был Френсис Гальтон, а самые популярные коэффициенты корреляции были разработаны его последователем Карлом Пирсоном. С тех пор изучение взаимосвязей с использованием коэффициентов корреляции является одним из наиболее популярных в психологии занятием.
К настоящему времени разработано великое множество различных коэффициентов корреляции, проблеме измерения взаимосвязи с их помощью посвящены сотни книг. Поэтому, не претендуя на полноту изложения, мы рассмотрим лишь самые важные, действительно незаменимые в исследованиях меры связи — rxy--Пирсона, ρ-Спирмена и τ-Кендалла1. Их общей особенностью является то, что они отражают взаимосвязь двух признаков, измеренных в количественной шкале — ранговой или метрической.
Вообще говоря, любое эмпирическое исследование сосредоточено на изучении взаимосвязей двух или более переменных.
ПРИМЕР
![]() |
Приведем пример исследования влияния демонстрации сцен насилия по ТВ на агрессивность подростков. 1. Изучается взаимосвязь двух переменных, измеренных в количественной (ранговой или метрической) шкале:
1) «время просмотра телепередач с насилием»;
2) «агрессивность».
Читается как тау-Кендалла.
2. Изучается различие в агрессивности 2-х или более групп подростков, отличающихся длительностью просмотра телепередач с демонстрацией сцен насилия.
Во втором примере изучение различий может быть представлено как исследование взаимосвязи 2-х переменных, одна из которых — номинативная (длительность просмотра телепередач). И для этой ситуации также разработаны свои коэффициенты корреляции.
Любое исследование можно свести к изучению корреляций, благо изобретены самые различные коэффициенты корреляции для практически любой исследовательской ситуации. Но в дальнейшем изложении мы будем различать два класса задач:
□ исследование корреляций — когда две переменные представлены в числовой шкале;
□ исследование различий — когда хотя бы одна из двух переменных представлена в номинативной шкале.
Такое деление соответствует и логике построения популярных компьютерных статистических программ, в которых в меню Корреляции предлагаются три коэффициента (г-Пирсона, r-Спирмена и т-Кендалла), а для решения других исследовательских задач предлагаются методы сравнения групп.