Разложение периодических несинусоидальных кривых в ряд Фурье
Из математики известно, что всякая периодическая функция , где Т – период, удовлетворяющая условиям Дирихле, может быть разложена в тригонометрический ряд. Можно отметить, что функции, рассматриваемые в электротехнике, этим условиям удовлетворяют, поэтому проверку на их выполнение проводить не нужно.
При разложении в ряд Фурье функция представляется следующим образом:
![]() | (1) |
Здесь - постоянная составляющая или нулевая гармоника;
- первая (основная) гармоника, изменяющаяся с угловой частотой
, где Т – период несинусоидальной периодической функции.
В выражении (1)
,
где и
коэффициенты определяются по формулам