Эпигенетические феномены

С генетической точки зрения вопрос о причинах дифференцировки 100 триллионов (1014) клеток организма человека, имеющих единый геном, сводится к проблеме дифференциальной экспрессии генов в разных клетках развивающегося организма. Становится все более очевидным, что стабильное поддержание этих различий обусловлено эпигенетическим контролем генной экспрессии. В настоящее время под эпигенетической изменчивостью понимается изменение экспрессии генов без изменения первичной последовательности нуклеотидов в ДНК. В более узком смысле слово «эпигенетика» означает модификацию генной экспрессии, обусловленную наследственными, но потенциально обратимыми изменениями в структуре хроматина и/или в результате метилирования ДНК.

Интенсивные исследования регуляцииактивности генов различных видов микроорганизмов, растений, насекомых,животных и человека и секвенирование геномов, выполненные в последниедесятилетия XX в., ознаменовались открытием ряда эпигенетических феноменов, к которым можно отнести эффект положения, парамутацию, трансвекцию,косупрессию или РНК-интерференцию, явление прионизации, супрессию транспозонов, геномный импринтинг и инактивацию Х-хромосомы.

Под эффектом положения (Position-effect Variegation - PEV) понимаютизменение фенотипического эффекта гена в зависимости от расположениясоседних с ним генов. Этот эффект был обнаружен А. Стертевантом в 1925 г. у дрозофилы. У данного объекта часто наблюдается изменение экспрессииэухроматинового гена в результате его перемещения в гетерохроматиновуюобласть генома. Эффект положения был обнаружен впоследствии у многихорганизмов, включая человека

. Следует отметить, что корректная экспрессия генов зависит от ряда факторов: 1) состояния промоторной области, где фиксируется транскрипционный комплекс; 2) состояния энхансеров исайленсеров - коротких областей ДНК, обеспечивающих присоединение тканеспецифичных транскрипционных факторов и помогающих сборке транскрипционного комплекса на промоторе; 3) локального состояния хроматина, окружающего промоторы и энхансеры, которое обеспечивает их доступность для белков, участвующих в контроле транскрипции.

Нарушение любого из этих факторов, а также изменение взаиморасположения отдельных элементов, контролирующих работу транскрипционного комплекса, могут привести к изменению транскрипции гена.

Анализ генов и хромосомных перестроек, связанных с рядом заболеваний, привел к пониманию того, что не всегда в случаях нарушения экспрессии определенного гена единица транскрипции данного гена и его промоторная часть несут какой-либо дефект. Изучение этих случаев имеет важное значение для понимания механизмов регуляции работы генов и контроля их транскрипции. В настоящее время важную роль в механизме PEV отводят третьему вышеуказанному уровню контроля генной экспрессии: уменьшение экспрессии или выключение какого-либо гена в результате перемещения его в гетерохроматиновую область генома объясняется формированием репрессионной структуры хроматина данного локуса под влиянием гетерохроматина, обладающего такой конденсированной нуклеосомной структурой. Конкретный механизм изменения структуры хроматина в связи с метилированием ДНК и деацетилированием гистонов будет рассмотрен ниже.

 

РНК-интерференция (англ. RNA interference, RNAi) — процесс подавления экспрессии гена на стадии транскрипции, трансляции, деаденилирования или деградации мРНК при помощи малых молекул РНК.

Процессы РНК-интерференции обнаружены в клетках многих эукариот: у животных, растений и грибов. Система РНК-интерференции играет важную роль в защите клеток от вирусов, паразитирующих генов (транспозонов), а также в регуляцииразвития, дифференцировки и экспрессии генов организма.

 

 


Трехмерная структура РНК-переключателя, реагирующего на тиаминпирофосфат