Доказательство
Теорема 1
При сферическом движении в твердом теле можно указать прямую, все точки которой будут иметь мгновенную скорость, равную нулю.
По формуле Эйлера любая точка
тела при вращении вокруг неподвижной точки
имеет скорость
, (3.13.1)
где
— это положение точки
относительно точки отсчета
в момент времени
.
Оно может задаваться как вектором
с координатами
в связанной системе, и тогда эти координаты будут постоянны, так и вектором
с координатами
в абсолютной системе, и тогда эти координаты будут функциями времени, причем

,
где
— матрица ориентации.
Положим в (3.13.1)
(в фиксированный момент времени
). В таком случае из (3.13.1) вытекает
(3.13.2)
для любого
.
Если рассматривать соотношение (3.13.2) в абсолютном пространстве, то следует положить в нем
. Вектор
следует считать заданным своими координатами в абсолютной системе.
При фиксированном значении времени
и произвольных значениях
соотношение (3.13.2) задает в абсолютном пространстве параметрическое уравнение прямой, проходящей через неподвижную точку
.
Каждая такая прямая является геометрическим местом тех положений в абсолютном пространстве точек
твердого тела, в которых они (точки
) имеют скорость, равную нулю в момент времени
.
Если рассматривать равенство (3.13.2) применительно к векторам
, задаваемым в подвижном пространстве (в системе
, связанной с твердым телом), то в (3.13.2) следует положить
. Тогда и вектор угловой скорости
должен рассматриваться в проекциях на связанные оси.
В таком случае при фиксированном значении времени 
соотношение(3.13.2)
(3.13.2)
является параметрическим уравнением прямой в связанной системе.
Оно задает положения в теле всех тех его точек
, которые в момент
имеют скорость, равную нулю. Теорема доказана.