Приближение сигналов рядами тейлора

Исторически разложение функций в ряд Тейлора явилось одним из первых методов приближения функций в окрестностях точек х0:

f(x) @ f(x0) + (x-x0) + (x-x0)2 + … + (x-x0)n.

f(x) @ f(x0) +(x-x0)i.

При разложении функции в окрестностях точки х0=0 ряд Тейлора принято называть рядом Маклорена.

Первый член f(x0) ряда представляет собой отсчет функции в точке х0 и грубое приближение к значениям функции в окрестностях этой точки. Все остальные члены ряда детализируют значения функции в окрестностях точки х0 по информации в соседних точках и тем точнее приближают сумму ряда к значениям функции, чем больше членов суммы участвуют в приближении, с одновременным расширением интервала окрестностей точного приближения. Наглядно это можно видеть на примере двух функций, приведенном на рис. 14.1.1 (копия расчетов в среде Mathcad с усечением отображения членов длинных рядов f2(x) и f4(x)).

Рис. 14.1.1. Примеры разложения функций в ряд Маклорена.

Приближение функций рядом Тейлора имеет много недостатков. Оно применяется, в основном, для непрерывных и гладких функций в локальных интервалах задания. Для разрывных и периодически повторяющихся функций использовать его практически невозможно, равно как и для непрерывных не дифференцируемых функций. Операция дифференцирования сама по себе тоже может быть далеко не простой, а получаемые ряды могут сходиться очень медленно.