Примеры разложения функций в ряды Фурье.
Пример 1. Периодическая функция ƒ(x) с периодом 2π определяется следующим образом: ƒ(x) = х , -π < x ≤ π.
Эта функция – кусочно монотонная и ограниченная. Следовательно, её можно разложить в ряд Фурье.
По формуле (4) находим:
Применяя формулам (17), (18) и интегрируя по частям, получим:
.
Таким образом, получаем ряд:
.
Это равенство имеет место во всех точках, кроме точек разрыва. В каждой точке разрыва сумма ряда равна среднему арифметическому ее пределов справа и слева, т. е. нулю.
Пример 2. Периодическая функция ƒ(x) с периодом 2π определена следующим образом:
ƒ(x) = -1 при –π < x < 0,
ƒ(x) = 1 при 0 ≤ x ≤ π.
Эта функция кусочно монотонна и ограничена на отрезке [-π, π]. Вычислим ее коэффициенты Фурье:
,
Следовательно, для рассматриваемой функции ряд Фурье имеет вид:
.
Это равенство справедливо во всех точках, кроме точек разрыва.
11.5. Замечание о разложении периодической функции в ряд Фурье.
Отметим следующее свойство периодической функции ψ(x) с периодом 2π:
, каково бы ни было число λ.
Действительно, так как ψ(ξ - 2π) = ψ (ξ) , то, полагая x = ξ - π, можем написать при любых c и d:
.
В частности, принимая с = - π, d = λ, получим:
поэтому
Указанное свойство означает, что интеграл от периодической функции ψ(x) по любому отрезку, длина которого равна периоду, имеет всегда одно и тоже значение.
Из доказанного свойства вытекает, что при вычислении коэффициентов Фурье мы можем заменить промежуток интегрирования (-π, π) промежутком интегрирования (λ, λ +2π), т. е. можем положить
(20)
где λ – любое число.
Это следует из того, что функция ƒ(x) является, по условию, периодической с периодом 2π; следовательно и функция ƒ(x)·cоsnx, и ƒ(x)·sinnx являются периодическими функциями с периодом 2π. В некоторых случаях доказанное свойство упрощает процесс нахождения коэффициентов.
Пример.
Пусть требуется разложить в ряд Фурье функцию ƒ(x) с периодом 2π, которая на отрезке 0 < x ≤ 2π задана равенством ƒ(x)= х.
Эта функция на отрезке [-π, π] задается двумя формулами:
ƒ(x) = х + 2π на отрезке [-π, 0]
ƒ(x) = х на отрезке [0, π].
В то же время на отрезке [0, 2π] гораздо проще она задается одной формулой ƒ(x) = х. Поэтому для разложения этой функции в ряд Фурье выгоднее воспользоваться формулами (20), приравняв λ=0.
Следовательно,
11.6. Ряды Фурье для чётных и нечётных функций.
Теорема:Для любой чётной функции её ряд Фурье состоит только из косинусов.
Для любой нечётной функции:
.
Из определения четной и нечетной функции следует, что если ψ(x) – четная функция, то
.
Действительно,
так как по определению четной функции ψ(- x) = ψ(x).
Аналогично можно доказать, что если ψ(x) – нечетная функция, то
Если в ряд Фурье разлагается нечетная функция ƒ(x), то произведение ƒ(x) ·coskx есть функция также нечетная, а ƒ(x) · sinkx – четная; следовательно,
(21)
т. е. ряд Фурье нечетной функции содержит «только синусы».
Если в ряд Фурье разлагается четная функция, то произведение ƒ(x)·sinkx есть функция нечетная, а ƒ(x) · coskx – четная, то:
(22)
т. е. ряд Фурье четной функции содержит «только косинусы».
Полученные формулы позволяют упрощать вычисления при разыскании коэффициентов Фурье в тех случаях, когда заданная функция является четной или нечетной. Очевидно, что не всякая периодическая функция является четной или нечетной.