Метод Зейделя (модификация метода итераций).
ЛЕКЦИЯ № 5
При решении системы линейных алгебраических уравнений вида (1) методом итераций значение вычисляется по значениям с предыдущей итерации
,
, ... ,
путем подстановки
в правую часть системы (4).
Можно ожидать, что приближения будут быстрее сходиться к решению системы, если сразу же после вычисления
, при вычислении последующих
использовать
, а не
в правой части (4).
Процедура вычисления через
,
,...,
,
,
называется методом Зейделя и записывается в развернутой форме в виде:
(9)
Запишем метод Зейделя в векторной форме, для этого представим матрицу a в виде суммы двух треугольных матриц L и U, где
,
Тогда систему (9) можно записать в виде матричного равенства:
(10)
Матрица (E-L) - неособенная, т.е. имеет обратную (E-L)-1, следовательно, можно выразить х(k+1) из(10)
Из (10) получаем, что
Обозначим
тогда
(11)
Следовательно, метод Зейделя для системы (1) эквивалентен методу простой итерации x = ax + b для системы x = Px + Q, где матрица P и вектор Q определены выше.
Теперь для сходимости (11) достаточно, чтобы ||P||1 < 1 или ||P||2 < 1.
Используя собственные значения матрицы P можно дать необходимое и достаточное условие сходимости процесса итераций для системы (11):|l(P)| < 1
Здесь в качестве матрицы a выступает матрица P , а в качестве вектора b - вектор Q .
Если для одной и той же системы методы итерации и Зейделя сходятся, то метод Зейделя предпочтительнее.
Достаточное условие сходимости процесса Зейделя.
ТЕОРЕМА: Если для линейной системы
х = aх + b (2)
выполнено условие , где
, то процесс (9) для системы (2) сходится к единственному решению при любом выборе начального приближения.
Доказательство: ………………………………………………………………………………
Оценим погрешности приближений по методу Зейделя.
Пусть и
- две последовательные итерации процесса Зейделя.
Применяя к этим итерациям преобразования, получим:
Выполним аналогичные (как для МПИ) преобразования для разности между (k+m)- м и k -м членами последовательных приближений по Зейделю при некотором mÎN :
Рассматривая итоговое равенство при , переходя к пределу
получим утверждения теоремы:
, где
Тогда условие окончания итерационного процесса Зейделя будет иметь вид:
или
Тогда или
,