Научная революция XVII века.

Рождение классической науки. Развитие науки в 18-19 вв.

Лекция 3.

Химические методы

Медьсодержащая спираль

Действие химических препаратов заключается в создании барьера для сперматозоидов. Местные средства. Выпускаются в виде шариков, паст, мазей и таблеток. Применяются местно непосредственно перед половым актом.

После полового акта есть несколько народных средств:

  • 1-2%-ный раствор борной кислоты,
  • раствор уксуса,
  • 20%-ный раствор поваренной соли,
  • 1%-ный раствор лимонной кислоты,
  • раствор марганцовки.

Особо полагаться на них не стоит. Эффективность составляет около 50%. Это, так сказать, средства скорой помощи. Другой способ воздействия — спермициды разрушают сперматозоиды в течение нескольких секунд и/или посредством высвобождения кислот уменьшают двигательную способность сперматозоидов. Спермициды используются в большинстве случаев как дополнительное средство, ввиду невысокой эффективности этих препаратов. Медь действует разрушающе на сперматозоиды и препятствует имплантации эмбриона.

 

Общепринятым считается положение о том, что именно в XVII в.возникла европейская наука (прежде всего это относится к классическому естествознанию), причем "в начале века ее еще не было, в конце века она уже была". Характерно, что возникла она сразу во взаимосвязи всех составляющих: теоретического знания, его логического обоснования и математического описания, экспериментальной проверки, социальной структуры с сетью научных коммуникаций и общественным применением.

География этого процесса включает немало европейских стран и городов, но представляется возможным выделение Италии в начале, и Англии в конце периода, как его "главных" научных центров.

Условно могут быть выделены три этапа становления науки. Первый, связанный, прежде всего, с деятельностью Г. Галилея – формирование новой научной парадигмы; второй – с Р. Декартом – формирование теоретико-методологических основ новой науки; и третий – "главным" героем которого был И. Ньютон, – полное завершение новой научной парадигмы – начало современной науки. И хотя не все согласны с определением "научная революция", впервые введенным в 1939 г. А. Койре, все сходятся в том, что именно в XVII в. была создана классическая наука современного типа.

В данный период на первый план выходит научное знание в области астрономии. Особенно это касается так называемой наблюдательной астрономии. Высшего совершенства в наблюдательной астрономии в "дотелескопическую эпоху" достиг, несомненно, Тихо Браге (1546 – 1601), помощником и, в определенной мере, научным наследником которого был Иоганн Кеплер (1571 – 1630). На основе наблюдений Браге составил каталог 777 звезд, причем координаты 21 опорной звезды были им определены с особой тщательностью. Ошибка при определении положений звезд не превышала одной минуты, а для опорных звезд – еще меньше. Позднее список звезд был доведен до 1000.Самым революционным в науке было наблюдение Тихо Браге появления новой звезды в созвездии Кассиопеи 11 ноября 1572 г. Тихо Браге не только зафиксировал это явление, но и строго научно его описал. Совершеннейший надлунный мир Аристотеля получил еще один сильнейший удар.

Новая модель мира. Первый "рабочий чертеж" новой модели мира суждено было выполнить Иоганну Кеплеру,на которого с детства выпало столько личных несчастий, что трудно найти более тяжелую судьбу. Кеплер был открытым и последовательным пифагорейцем и совершенство своей астрономической модели искал (и нашел!) в сочетании правильных многогранников и описывавших их окружностей, правда, нашел их в своей третьей геометрической модели, отказавшись при этом от круговой орбиты небесных тел.

Кеплер заложил первый камень (вторым стала механика Галилея) в фундамент, на котором покоится теория Ньютона.

Космология и механика Галилея. У Галилео Галилея (1564 – 1642) впервые связь космологии с наукой о движении приобрела осознанный характер, что и стало основой создания научной механики. Первоначально (до 1610 г.) Галилеем были открыты законы механики, но первые публикации и трагические моменты его жизни были связаны с менее оригинальными работами по космологии. Изобретение в 1608 г. голландцем Хансом Липперсхеем,изготовителем очков, телескопа (правда, не предназначавшегося для астрономических целей), дало возможность Галилею, усовершенствовав его, в январе 1610 г. "открыть новую астрономическую эру". Оказалось, что Луна покрыта горами, Млечный путь состоит из звезд, Юпитер окружен четырьмя спутниками и т.д. "Аристотелевский мир" рухнул окончательно. Вместе с тем, Галилей не создал цельной системы.

Механика Галилея дает идеализированное описание движения тел вблизи поверхности Земли, пренебрегая сопротивлением воздуха, кривизной земной поверхности и зависимостью ускорения свободного падения от высоты.

Философско-методологическая манифестация научной революции.Только спустя несколько веков оказалось возможным выделить какие-либо тенденции в XVII в. "Внутри" же него процессы были мало связаны друг с другом. Мощное эмпирическое движение в естествознании зародилось само по себе – оно отвечало какой-то внутренней потребности познания; философско-методологическое осознание этого "внутреннего движения" развивалось также само собой, и то, что сегодня мы видим их тождественность – весомый аргумент в обосновании научности как таковой.

Первыми "концептуалистами" Нового времени принято считать Фрэнсиса Бэкона (1561 – 1626) и Рене Декарта (1596 – 1650).

Бэкону принадлежит провозглашение главенства метода индукции.

Декарт несравненно более глубокий мыслитель – основатель философии Нового времени. В отличие от Бэкона, Декарт ищет обоснование знания не столько в сфере его практической реализации, сколько в сфере самого знания. Поэтому в центре методологических размышлений ("сомнений") Декарта – мысль и сам Человек. Три положения механики Декарта важны для понимания последующей философии естествознания: в мире отсутствует пустота, Вселенная наполнена материей (и вся она в непрерывном движении), материя и пространство суть одно. Не существует абсолютной системы отсчета, а следовательно, и абсолютного движения.Р. Декарт явился типичным представителем ятрофизики – направления в естествознании, рассматривавшее живую природу с позиций физики.