Основи та схеми розрахунку апаратів для перемішування, осадження, фільтрування, псевдозрідження

Розрахунок гдравлічних опорів апаратів.

Приклади з алгоритмами розрахунку.

Всі приведені залежності придатні для розрахунку каналів круглого перетину, тоді як на практиці часто зустрічаються канали складної форми (прямокутник, овал і так далі), крім того, канали можуть бути захаращені, тобто усередині каналів можуть знаходитися елементи конструкції (труби в кожусі теплообмінника, нагрівачі в корпусі калорифера і ін.). Для розрахунку гідравлічного опору в цих випадках всі приведені залежності (34)-(44) придатні, якщо як визначальний розмір каналу приймати так званий "еквівалентний діаметр" – , який розраховують по загальній формулі

(45)

, (8.17)

де f – прохідний перетин каналу, м2;

U – змочений периметр каналу, м.

Як приклад визначимо для теплоносія, який рухається в міжтрубному просторі кожухотрубного теплообмінника з параметрами: внутрішній діаметр кожуха – D; число труб – n, зовнішній діаметр труби d (Рис. 2).

Рис. 2. Гідравлічна схема

  Прохідний перетин Змочений периметр Еквівалентний діаметр .  

 

И1 8.4 (постановка задачи, схема 8.10, ф-ла 8.36)

И1 165-175 (аналогично)

Перемішування є поширеним процесом в харчових технологіях, який виконується з різними цілями:

- створення однорідних емульсій, суспензій, розчинів;

- інтенсифікація процесів теплообміну в реакторах, апаратах і пр.;

- інтенсифікація процесів масообміну (в т.ч. у поєднанні з хімічною, біохімічною реакціями).

Інтенсивність перемішування визначається кількістю енергії, що вводиться в одиницю об'єму перемішуваного середовища за одиницю часу і обуславливает характер руху даної рідини в апараті.

Ефективність перемішування є характеристикою якості процесу. Ефективність перемішування можна характеризувати відношенням коефіцієнтів швидкості процесів при перемішуванні і без перемішування (відношення коефіцієнтів теплопередачі, массопередачи і відношення швидкостей реакції хімічного перетворення).

Рух рідини по каналах в умовах, коли впливом сил тяжіння можна нехтувати, характеризується залежністю числа Ейлера від числа Рейнольдса .

Стосовно даного випадку перемішування доцільно ввести модифіковані числа Рейнольдса і Ейлера.

Якщо мішалка є лопатями, насадженими на вал, що обертається, то лінійну швидкість перемішуваної рідини в першому наближенні можна прийняти пропорційній окружній швидкості мішалки:

(46)

де k1 – множник пропорційності; d – діаметр мішалки; n – частота обертання мішалки, с-1.

Стосовно процесу механічного перемішування рідини мішалкою модифіковане число Re може бути представлене у вигляді

(47)

Модифіковане число Ейлера для випадку механічного перемішування в рідкому середовищі

(48)

Схема розрахунків енергетичних характеристик мішалки має вигляд:

       
   
 

Процес осадження (виділення твердих частинок з суспензії) широко поширений через свою простоту. Фізичною основою при моделюванні процесів осадження є умови руху одиночної частинки під дією сил тяжіння у в'язкому середовищі.

Оскільки метою завдання є визначення швидкості падіння частинки (швидкості осадження), моделювання процесу зводиться до знаходження числа Re, в яке шукана швидкість входить в явному вигляді.

 
 

Таким чином, розрахункова схема для визначення швидкості осадження має вигляд:

 

Отримане значення швидкості осадження вимагає уточнення з урахуванням реальної форми частинок. Це проводиться із застосуванням так званого коефіцієнта форми φ, який завжди менше 1.

Експериментальні значення φ:

- частинки еліпсоїдної форми φ= 0,77;

- частинки незграбних форм φ=0,66;

- частинки довгастої форми φ=0,58;

- частинки пластинчастої форми φ=0,43.

(49)

Крім того, необхідно враховувати, що при русі частинки в ансамблі, її швидкість осадження буде нижча, ніж для одиночної частинки. Для всього діапазону чисел Ar справедливе рівняння

(50)

де ;

wСТ – швидкість руху частинки в обмежених умовах.

- об'ємна частка рідини в даній системі;

- концентрація твердої фази в суспензії.

Знаючи швидкість осадження частинки легко можна визначити геометричні розміри відстійників різного типу.

 

Побудова моделі гідравлічного фільтру пов'язана з вибором моделі пристрою, що фільтрує.

В даний час існуючі математичні моделі засновані на розгляді умов руху в'язкої рідини в каналах фільтрів, які формуються шаром частинок (зазвичай в розрахунок беруться сферичні) або є системою звивистих капілярів. Обидва підходи дають зіставні результати, тому далі розглядається зерниста модель, як більш детермінована.

Модель зернистого фільтру. Шар частинок, через який фільтрують рідину з середньою швидкістю w, утворює систему каналів, діаметр яких dэк, а довжина l. Завдання зводиться до визначення гідравлічного опору в системі каналів.

Рівняння подібності, що описує рух потоку фільтрованої рідини, представляють в наступному вигляді:

(51)

Для ламинарного режиму руху (Re<35). Ця залежність має вигляд

(52)

Як визначальний розмір прийнятий еквівалентний діаметр каналів в шарі зернистого матеріалу, а швидкість потоку w віднесена до суми перетинів каналів – так званого вільного перетину.

Рух потоку рідини при фільтруванні буває зазвичай ламинарным, що і дозволяє обмежитися рівнянням (52).

(53)

 

Використовуючи наступне рівняння фільтрації також можна визначити розміри фільтру і час фільтрування:

(54)

де - константа фільтрування (м32), задається при розрахунках; характеризує опір фільтру;

- константа фільтрування (м2/с), враховує режим процесу і властивості осаду; задається при розрахунках.

 

Псевдозрідження - перетворення шару зернистого матеріалу на "псевдорідину" (киплячий шар) під дією висхідного потоку газу або рідини, достатнього для підтримки твердих частинок в зваженому стані.

Процес взаємодії газів і рідин з твердими зернистими і пилоподібними матеріалами, при проведенні яких тверді частинки набувають рухливості один щодо одного за рахунок обміну енергією з псевдоожижающим потоком називається процесом псевдозрідження.

Структурні моделі псевдозрідженого шару передбачають режимні відмінності: нерухомий шар (режим фільтрації), однорідний псевдозріджений шар при wwпс, неоднорідний псевдозріджений шар, віднесення твердих частинок, псевдозріджений шар з поршнеобразованием, псевдозріджений шар з каналообразованием.

При плавному збільшенні швидкості потоку від 0 до деякого першого критичного значення відбувається звичайний процес фільтрування, при якому тверді частинки нерухомі. Перехід від режиму фільтрації до стану псевдозрідження відповідає критичнії швидкості агента wпс.

У момент початку псевдозрідження маса зернистого і пилоподібного матеріалів, що доводиться на одиницю площі поперечного перетину апарату, врівноважується силою гідравлічного опору шару:

(55)

де Gсл – маса матеріалу в шарі; f – поперечний перетин апарату.

Визначення критичної швидкості псевдозрідження (wпс = wк) можна провести за допомогою рівняння

(56)

де ; ;

d,ρm – середній діаметр частинки і її густина в шарі

v, ρ – кінематичний коефіцієнт в'язкості і густина середовища відповідно.