Найважливіші прийоми аналізу рядів динаміки

.

Характеристики інтенсивності динаміки

Рівень ряду − первинне значення показника. Рівні ряду утворюють ряд динаміки. Рівні ряду є вихідною базою для розрахунку всіх показників, відображають безпосередній рівень розвитку на визначену дату чи за визначений період.

Розрізняють: початковий − перший член ряду динаміки; кінцевий − останній член ряду динаміки; середній - узагальнююча характеристика рівня ряду за весь період.

Способи розрахунку середнього рівня залежать від характеру ряду динаміки. Середній рівень інтервального ряду динаміки, що містить дані за декілька, що слідують безпосередньо один за одним, рівних відрізків часу, наприклад, за кілька років підряд, звичайно розраховуються за формулою середньої арифметичної простої.

Середній рівень моментного ряду динаміки розраховується за формулою хронологічної середньої:

Швидкість та інтенсивність розвитку різних суспільних явиш значно варіюють, що позначається на структурі відповідних динамі­чних рядів. Для оцінювання зазначених властивостей динаміки ста­тистика використовує низку взаємозв’язаних характеристик. Серед них: абсолютний приріст, відносний приріст, темп зростання, інші.

Розрахунок характеристик динаміки ґрунтується на порівнянні рівнів ряду. При порівнянні певної множини послідовних рівнів база порівняння може бути постійною чи змінною. За постійну базу вибирається або початковий рівень ряду, або рівень, який вважається вихідним для розвитку явища, що вивчається. Харак­теристики динаміки, обчислені відносно постійної бази, назива­ються базисними. Якщо кожний рівень ряду уt, порівнюється з попереднім уt-1 , характеристики динаміки називаються ланцю­говими.

Абсолютний приріст — різниця двох рівнів ряду динаміки. Абсолютний приріст характеризує збільшення (зменшення) рівня ряду динаміки за визначений період.

Величина абсолютного приросту за суміжні періоди чи моменти часу обчислюється за формулою

,

де — абсолютний приріст, уt— будь-який рівень ряду, починаючи з другого, уt-1 — рівень, що передує уt.. Це ланцюгові абсолютні прирости.

Базисні абсолютні прирости — це прирости за період у цілому, вони визначаються за формулою

,

де — абсолютний приріст, yt — рівень ряду, y0 — базисне значення показника.

Середній абсолютний приріст дорівнює частці від розподілу суми всіх абсолютних приростів на їхню кількість:

,

де — середній приріст, n — число членів ряду.

Очевидно, що сума ланцюгових абсолютних приростів дорівнює кінцевому базисному:

.

Для характеристики відносної швидкості зміни рівня ряду динаміки за одиницю часу використовуються показники темпу росту і приросту.

Темп росту − відношення одного рівня ряду динаміки до іншого рівня, прийнятого за базу порівняння. Темпи росту звичайно виражаються або в %, або у вигляді простих відносних величин, що називаються коефіцієнтами росту. Окремі значення рівнів ряду динаміки можуть бути прирівняні до одного й того ж самого рівня (звичайно, початкового) чи до попереднього рівня. У першому випадку база порівняння буде постійною, у другому − змінна. Тому базисні темпи росту:

;

ланцюгові темпи росту:

.

Очевидно, що добуток ланцюгових темпів росту дорівнює кінцевому базисному: .

Середній темп росту розраховується за формулою, як знаменник геометричної прогресії:

і показує, у скільки разів в середньому за одиницю часу змінювався рівень ряду.

Темп приросту — відношення абсолютного приросту до рівня ряду, прийнятого за базу порівняння.

Для ланцюгових характеристик:

;

для базисних характеристик:

.

Середній темп приросту:

.

 

Абсолютне значення одного відсотка приросту розраховується як відношення абсолютного приросту і темпу приросту:

Для базисних темпів приросту значення А% однакові. Очевидно, А% складає 1/100 частину рівня, прийнятого за базу порівняння.

Якщо швидкість розвитку в межах періоду, що вивчається, неоднакова, порівнянням однойменних характеристик швидкості вимірюється прискорення чи уповільнення динаміки. На базі абсолютних приростів оцінюються абсолютне та відносне прискорення. Абсолютне — це різниця між абсолютними приростами. Прискорення характеризується додатною величиною δt > 0, уповільнення — від’ємною δt < 0 .

Порівняння темпів зростання дає коефіцієнт прискорення (уповільнення) відносної швидкості розвитку. Для наочності та зручності їх тлумачення дільником є більший за значенням темп зростання.

У статистичному аналізі порівнюється також інтенсивність динаміки в різних рядах. Відношення темпів зростання k/ : k// називають коефіцієнтом випередження. За допомогою останнього порівнюють відносну швидкість динамічних рядів однакового змісту для різних об’єктів (регіони, країни тощо) або різного змісту для одного об’єкта.

 

Ряди динаміки й обчислювальні на їхній основі показники служать вихідною базою статистичної характеристики розвитку суспільних явищ у часі. Вони використовуються для виявлення основного напрямку розвитку, для виміру сезонних коливань і характеристики деяких інших особливостей процесів громадського життя. Рішення цих завдань у ряді випадків вимагає застосування спеціальних прийомів обробки й аналізу інформації.

Одна з найважливіших задач статистичної характеристики динаміки суспільних явищ полягає в тому, щоб встановити основну тенденцію розвитку, тобто основний напрямок розвитку явища.

Одним рядам притаманна тенденція до зростання, іншим — до зниження рівнів. Зростання чи зниження рівнів динамічного ряду, у свою чергу, відбувається по-різному: рівномірно, прискорено чи уповільнено. Нерідко ряди динаміки через коливання рівнів не виявляють чітко вираженої тенденції.

Щоб виявити й схарактеризувати основну тенденцію, застосо­вують різні способи згладжування та аналітичного вирівнювання динамічних рядів.

Суть згладжування полягає в укрупненні інтервалів часу та заміні первинного ряду рядом середніх по інтервалах.

Прикладом можуть служити наступні дані про вивантаження вагонів (табл. 8.3.1).